| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntzrec.b |
|
| 2 |
|
cntzrec.z |
|
| 3 |
1 2
|
cntzssv |
|
| 4 |
3
|
a1i |
|
| 5 |
|
eqid |
|
| 6 |
1 5
|
mndidcl |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simpll |
|
| 9 |
|
simpr |
|
| 10 |
9
|
sselda |
|
| 11 |
|
eqid |
|
| 12 |
1 11 5
|
mndlid |
|
| 13 |
8 10 12
|
syl2anc |
|
| 14 |
1 11 5
|
mndrid |
|
| 15 |
8 10 14
|
syl2anc |
|
| 16 |
13 15
|
eqtr4d |
|
| 17 |
16
|
ralrimiva |
|
| 18 |
1 11 2
|
elcntz |
|
| 19 |
18
|
adantl |
|
| 20 |
7 17 19
|
mpbir2and |
|
| 21 |
|
simpll |
|
| 22 |
|
simprl |
|
| 23 |
3 22
|
sselid |
|
| 24 |
|
simprr |
|
| 25 |
3 24
|
sselid |
|
| 26 |
1 11
|
mndcl |
|
| 27 |
21 23 25 26
|
syl3anc |
|
| 28 |
21
|
adantr |
|
| 29 |
23
|
adantr |
|
| 30 |
25
|
adantr |
|
| 31 |
10
|
adantlr |
|
| 32 |
1 11
|
mndass |
|
| 33 |
28 29 30 31 32
|
syl13anc |
|
| 34 |
11 2
|
cntzi |
|
| 35 |
24 34
|
sylan |
|
| 36 |
35
|
oveq2d |
|
| 37 |
1 11
|
mndass |
|
| 38 |
28 29 31 30 37
|
syl13anc |
|
| 39 |
11 2
|
cntzi |
|
| 40 |
22 39
|
sylan |
|
| 41 |
40
|
oveq1d |
|
| 42 |
36 38 41
|
3eqtr2d |
|
| 43 |
1 11
|
mndass |
|
| 44 |
28 31 29 30 43
|
syl13anc |
|
| 45 |
33 42 44
|
3eqtrd |
|
| 46 |
45
|
ralrimiva |
|
| 47 |
1 11 2
|
elcntz |
|
| 48 |
47
|
ad2antlr |
|
| 49 |
27 46 48
|
mpbir2and |
|
| 50 |
49
|
ralrimivva |
|
| 51 |
1 5 11
|
issubm |
|
| 52 |
51
|
adantr |
|
| 53 |
4 20 50 52
|
mpbir3and |
|