Metamath Proof Explorer


Theorem cntzsubm

Description: Centralizers in a monoid are submonoids. (Contributed by Stefan O'Rear, 6-Sep-2015) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses cntzrec.b B=BaseM
cntzrec.z Z=CntzM
Assertion cntzsubm MMndSBZSSubMndM

Proof

Step Hyp Ref Expression
1 cntzrec.b B=BaseM
2 cntzrec.z Z=CntzM
3 1 2 cntzssv ZSB
4 3 a1i MMndSBZSB
5 eqid 0M=0M
6 1 5 mndidcl MMnd0MB
7 6 adantr MMndSB0MB
8 simpll MMndSBxSMMnd
9 simpr MMndSBSB
10 9 sselda MMndSBxSxB
11 eqid +M=+M
12 1 11 5 mndlid MMndxB0M+Mx=x
13 8 10 12 syl2anc MMndSBxS0M+Mx=x
14 1 11 5 mndrid MMndxBx+M0M=x
15 8 10 14 syl2anc MMndSBxSx+M0M=x
16 13 15 eqtr4d MMndSBxS0M+Mx=x+M0M
17 16 ralrimiva MMndSBxS0M+Mx=x+M0M
18 1 11 2 elcntz SB0MZS0MBxS0M+Mx=x+M0M
19 18 adantl MMndSB0MZS0MBxS0M+Mx=x+M0M
20 7 17 19 mpbir2and MMndSB0MZS
21 simpll MMndSByZSzZSMMnd
22 simprl MMndSByZSzZSyZS
23 3 22 sselid MMndSByZSzZSyB
24 simprr MMndSByZSzZSzZS
25 3 24 sselid MMndSByZSzZSzB
26 1 11 mndcl MMndyBzBy+MzB
27 21 23 25 26 syl3anc MMndSByZSzZSy+MzB
28 21 adantr MMndSByZSzZSxSMMnd
29 23 adantr MMndSByZSzZSxSyB
30 25 adantr MMndSByZSzZSxSzB
31 10 adantlr MMndSByZSzZSxSxB
32 1 11 mndass MMndyBzBxBy+Mz+Mx=y+Mz+Mx
33 28 29 30 31 32 syl13anc MMndSByZSzZSxSy+Mz+Mx=y+Mz+Mx
34 11 2 cntzi zZSxSz+Mx=x+Mz
35 24 34 sylan MMndSByZSzZSxSz+Mx=x+Mz
36 35 oveq2d MMndSByZSzZSxSy+Mz+Mx=y+Mx+Mz
37 1 11 mndass MMndyBxBzBy+Mx+Mz=y+Mx+Mz
38 28 29 31 30 37 syl13anc MMndSByZSzZSxSy+Mx+Mz=y+Mx+Mz
39 11 2 cntzi yZSxSy+Mx=x+My
40 22 39 sylan MMndSByZSzZSxSy+Mx=x+My
41 40 oveq1d MMndSByZSzZSxSy+Mx+Mz=x+My+Mz
42 36 38 41 3eqtr2d MMndSByZSzZSxSy+Mz+Mx=x+My+Mz
43 1 11 mndass MMndxByBzBx+My+Mz=x+My+Mz
44 28 31 29 30 43 syl13anc MMndSByZSzZSxSx+My+Mz=x+My+Mz
45 33 42 44 3eqtrd MMndSByZSzZSxSy+Mz+Mx=x+My+Mz
46 45 ralrimiva MMndSByZSzZSxSy+Mz+Mx=x+My+Mz
47 1 11 2 elcntz SBy+MzZSy+MzBxSy+Mz+Mx=x+My+Mz
48 47 ad2antlr MMndSByZSzZSy+MzZSy+MzBxSy+Mz+Mx=x+My+Mz
49 27 46 48 mpbir2and MMndSByZSzZSy+MzZS
50 49 ralrimivva MMndSByZSzZSy+MzZS
51 1 5 11 issubm MMndZSSubMndMZSB0MZSyZSzZSy+MzZS
52 51 adantr MMndSBZSSubMndMZSB0MZSyZSzZSy+MzZS
53 4 20 50 52 mpbir3and MMndSBZSSubMndM