Metamath Proof Explorer


Theorem cntzsubr

Description: Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses cntzsubr.b B = Base R
cntzsubr.m M = mulGrp R
cntzsubr.z Z = Cntz M
Assertion cntzsubr R Ring S B Z S SubRing R

Proof

Step Hyp Ref Expression
1 cntzsubr.b B = Base R
2 cntzsubr.m M = mulGrp R
3 cntzsubr.z Z = Cntz M
4 2 1 mgpbas B = Base M
5 4 3 cntzssv Z S B
6 5 a1i R Ring S B Z S B
7 simpll R Ring S B z S R Ring
8 ssel2 S B z S z B
9 8 adantll R Ring S B z S z B
10 eqid R = R
11 eqid 0 R = 0 R
12 1 10 11 ringlz R Ring z B 0 R R z = 0 R
13 7 9 12 syl2anc R Ring S B z S 0 R R z = 0 R
14 1 10 11 ringrz R Ring z B z R 0 R = 0 R
15 7 9 14 syl2anc R Ring S B z S z R 0 R = 0 R
16 13 15 eqtr4d R Ring S B z S 0 R R z = z R 0 R
17 16 ralrimiva R Ring S B z S 0 R R z = z R 0 R
18 simpr R Ring S B S B
19 1 11 ring0cl R Ring 0 R B
20 19 adantr R Ring S B 0 R B
21 2 10 mgpplusg R = + M
22 4 21 3 cntzel S B 0 R B 0 R Z S z S 0 R R z = z R 0 R
23 18 20 22 syl2anc R Ring S B 0 R Z S z S 0 R R z = z R 0 R
24 17 23 mpbird R Ring S B 0 R Z S
25 24 ne0d R Ring S B Z S
26 simpl2 R Ring S B x Z S y Z S z S x Z S
27 simpr R Ring S B x Z S y Z S z S z S
28 21 3 cntzi x Z S z S x R z = z R x
29 26 27 28 syl2anc R Ring S B x Z S y Z S z S x R z = z R x
30 simpl3 R Ring S B x Z S y Z S z S y Z S
31 21 3 cntzi y Z S z S y R z = z R y
32 30 27 31 syl2anc R Ring S B x Z S y Z S z S y R z = z R y
33 29 32 oveq12d R Ring S B x Z S y Z S z S x R z + R y R z = z R x + R z R y
34 simpl1l R Ring S B x Z S y Z S z S R Ring
35 5 26 sselid R Ring S B x Z S y Z S z S x B
36 5 30 sselid R Ring S B x Z S y Z S z S y B
37 simp1r R Ring S B x Z S y Z S S B
38 37 sselda R Ring S B x Z S y Z S z S z B
39 eqid + R = + R
40 1 39 10 ringdir R Ring x B y B z B x + R y R z = x R z + R y R z
41 34 35 36 38 40 syl13anc R Ring S B x Z S y Z S z S x + R y R z = x R z + R y R z
42 1 39 10 ringdi R Ring z B x B y B z R x + R y = z R x + R z R y
43 34 38 35 36 42 syl13anc R Ring S B x Z S y Z S z S z R x + R y = z R x + R z R y
44 33 41 43 3eqtr4d R Ring S B x Z S y Z S z S x + R y R z = z R x + R y
45 44 ralrimiva R Ring S B x Z S y Z S z S x + R y R z = z R x + R y
46 simp1l R Ring S B x Z S y Z S R Ring
47 simp2 R Ring S B x Z S y Z S x Z S
48 5 47 sselid R Ring S B x Z S y Z S x B
49 simp3 R Ring S B x Z S y Z S y Z S
50 5 49 sselid R Ring S B x Z S y Z S y B
51 1 39 ringacl R Ring x B y B x + R y B
52 46 48 50 51 syl3anc R Ring S B x Z S y Z S x + R y B
53 4 21 3 cntzel S B x + R y B x + R y Z S z S x + R y R z = z R x + R y
54 37 52 53 syl2anc R Ring S B x Z S y Z S x + R y Z S z S x + R y R z = z R x + R y
55 45 54 mpbird R Ring S B x Z S y Z S x + R y Z S
56 55 3expa R Ring S B x Z S y Z S x + R y Z S
57 56 ralrimiva R Ring S B x Z S y Z S x + R y Z S
58 28 adantll R Ring S B x Z S z S x R z = z R x
59 58 fveq2d R Ring S B x Z S z S inv g R x R z = inv g R z R x
60 eqid inv g R = inv g R
61 simplll R Ring S B x Z S z S R Ring
62 simplr R Ring S B x Z S z S x Z S
63 5 62 sselid R Ring S B x Z S z S x B
64 simplr R Ring S B x Z S S B
65 64 sselda R Ring S B x Z S z S z B
66 1 10 60 61 63 65 ringmneg1 R Ring S B x Z S z S inv g R x R z = inv g R x R z
67 1 10 60 61 65 63 ringmneg2 R Ring S B x Z S z S z R inv g R x = inv g R z R x
68 59 66 67 3eqtr4d R Ring S B x Z S z S inv g R x R z = z R inv g R x
69 68 ralrimiva R Ring S B x Z S z S inv g R x R z = z R inv g R x
70 ringgrp R Ring R Grp
71 70 ad2antrr R Ring S B x Z S R Grp
72 simpr R Ring S B x Z S x Z S
73 5 72 sselid R Ring S B x Z S x B
74 1 60 grpinvcl R Grp x B inv g R x B
75 71 73 74 syl2anc R Ring S B x Z S inv g R x B
76 4 21 3 cntzel S B inv g R x B inv g R x Z S z S inv g R x R z = z R inv g R x
77 64 75 76 syl2anc R Ring S B x Z S inv g R x Z S z S inv g R x R z = z R inv g R x
78 69 77 mpbird R Ring S B x Z S inv g R x Z S
79 57 78 jca R Ring S B x Z S y Z S x + R y Z S inv g R x Z S
80 79 ralrimiva R Ring S B x Z S y Z S x + R y Z S inv g R x Z S
81 70 adantr R Ring S B R Grp
82 1 39 60 issubg2 R Grp Z S SubGrp R Z S B Z S x Z S y Z S x + R y Z S inv g R x Z S
83 81 82 syl R Ring S B Z S SubGrp R Z S B Z S x Z S y Z S x + R y Z S inv g R x Z S
84 6 25 80 83 mpbir3and R Ring S B Z S SubGrp R
85 2 ringmgp R Ring M Mnd
86 4 3 cntzsubm M Mnd S B Z S SubMnd M
87 85 86 sylan R Ring S B Z S SubMnd M
88 2 issubrg3 R Ring Z S SubRing R Z S SubGrp R Z S SubMnd M
89 88 adantr R Ring S B Z S SubRing R Z S SubGrp R Z S SubMnd M
90 84 87 89 mpbir2and R Ring S B Z S SubRing R