Metamath Proof Explorer


Theorem cntzsubrng

Description: Centralizers in a non-unital ring are subrings. (Contributed by AV, 17-Feb-2025)

Ref Expression
Hypotheses cntzsubrng.b B = Base R
cntzsubrng.m M = mulGrp R
cntzsubrng.z Z = Cntz M
Assertion cntzsubrng Could not format assertion : No typesetting found for |- ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) e. ( SubRng ` R ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 cntzsubrng.b B = Base R
2 cntzsubrng.m M = mulGrp R
3 cntzsubrng.z Z = Cntz M
4 2 1 mgpbas B = Base M
5 4 3 cntzssv Z S B
6 5 a1i R Rng S B Z S B
7 simpll R Rng S B z S R Rng
8 ssel2 S B z S z B
9 8 adantll R Rng S B z S z B
10 eqid R = R
11 eqid 0 R = 0 R
12 1 10 11 rnglz R Rng z B 0 R R z = 0 R
13 7 9 12 syl2anc R Rng S B z S 0 R R z = 0 R
14 1 10 11 rngrz R Rng z B z R 0 R = 0 R
15 7 9 14 syl2anc R Rng S B z S z R 0 R = 0 R
16 13 15 eqtr4d R Rng S B z S 0 R R z = z R 0 R
17 16 ralrimiva R Rng S B z S 0 R R z = z R 0 R
18 simpr R Rng S B S B
19 1 11 rng0cl R Rng 0 R B
20 19 adantr R Rng S B 0 R B
21 2 10 mgpplusg R = + M
22 4 21 3 cntzel S B 0 R B 0 R Z S z S 0 R R z = z R 0 R
23 18 20 22 syl2anc R Rng S B 0 R Z S z S 0 R R z = z R 0 R
24 17 23 mpbird R Rng S B 0 R Z S
25 24 ne0d R Rng S B Z S
26 simpl2 R Rng S B x Z S y Z S z S x Z S
27 21 3 cntzi x Z S z S x R z = z R x
28 26 27 sylancom R Rng S B x Z S y Z S z S x R z = z R x
29 simpl3 R Rng S B x Z S y Z S z S y Z S
30 21 3 cntzi y Z S z S y R z = z R y
31 29 30 sylancom R Rng S B x Z S y Z S z S y R z = z R y
32 28 31 oveq12d R Rng S B x Z S y Z S z S x R z + R y R z = z R x + R z R y
33 simpl1l R Rng S B x Z S y Z S z S R Rng
34 5 26 sselid R Rng S B x Z S y Z S z S x B
35 5 29 sselid R Rng S B x Z S y Z S z S y B
36 simp1r R Rng S B x Z S y Z S S B
37 36 sselda R Rng S B x Z S y Z S z S z B
38 eqid + R = + R
39 1 38 10 rngdir R Rng x B y B z B x + R y R z = x R z + R y R z
40 33 34 35 37 39 syl13anc R Rng S B x Z S y Z S z S x + R y R z = x R z + R y R z
41 1 38 10 rngdi R Rng z B x B y B z R x + R y = z R x + R z R y
42 33 37 34 35 41 syl13anc R Rng S B x Z S y Z S z S z R x + R y = z R x + R z R y
43 32 40 42 3eqtr4d R Rng S B x Z S y Z S z S x + R y R z = z R x + R y
44 43 ralrimiva R Rng S B x Z S y Z S z S x + R y R z = z R x + R y
45 simp1l R Rng S B x Z S y Z S R Rng
46 simp2 R Rng S B x Z S y Z S x Z S
47 5 46 sselid R Rng S B x Z S y Z S x B
48 simp3 R Rng S B x Z S y Z S y Z S
49 5 48 sselid R Rng S B x Z S y Z S y B
50 1 38 rngacl R Rng x B y B x + R y B
51 45 47 49 50 syl3anc R Rng S B x Z S y Z S x + R y B
52 4 21 3 cntzel S B x + R y B x + R y Z S z S x + R y R z = z R x + R y
53 36 51 52 syl2anc R Rng S B x Z S y Z S x + R y Z S z S x + R y R z = z R x + R y
54 44 53 mpbird R Rng S B x Z S y Z S x + R y Z S
55 54 3expa R Rng S B x Z S y Z S x + R y Z S
56 55 ralrimiva R Rng S B x Z S y Z S x + R y Z S
57 27 adantll R Rng S B x Z S z S x R z = z R x
58 57 fveq2d R Rng S B x Z S z S inv g R x R z = inv g R z R x
59 eqid inv g R = inv g R
60 simplll R Rng S B x Z S z S R Rng
61 simplr R Rng S B x Z S z S x Z S
62 5 61 sselid R Rng S B x Z S z S x B
63 simplr R Rng S B x Z S S B
64 63 sselda R Rng S B x Z S z S z B
65 1 10 59 60 62 64 rngmneg1 R Rng S B x Z S z S inv g R x R z = inv g R x R z
66 1 10 59 60 64 62 rngmneg2 R Rng S B x Z S z S z R inv g R x = inv g R z R x
67 58 65 66 3eqtr4d R Rng S B x Z S z S inv g R x R z = z R inv g R x
68 67 ralrimiva R Rng S B x Z S z S inv g R x R z = z R inv g R x
69 rnggrp R Rng R Grp
70 69 ad2antrr R Rng S B x Z S R Grp
71 simpr R Rng S B x Z S x Z S
72 5 71 sselid R Rng S B x Z S x B
73 1 59 70 72 grpinvcld R Rng S B x Z S inv g R x B
74 4 21 3 cntzel S B inv g R x B inv g R x Z S z S inv g R x R z = z R inv g R x
75 63 73 74 syl2anc R Rng S B x Z S inv g R x Z S z S inv g R x R z = z R inv g R x
76 68 75 mpbird R Rng S B x Z S inv g R x Z S
77 56 76 jca R Rng S B x Z S y Z S x + R y Z S inv g R x Z S
78 77 ralrimiva R Rng S B x Z S y Z S x + R y Z S inv g R x Z S
79 69 adantr R Rng S B R Grp
80 1 38 59 issubg2 R Grp Z S SubGrp R Z S B Z S x Z S y Z S x + R y Z S inv g R x Z S
81 79 80 syl R Rng S B Z S SubGrp R Z S B Z S x Z S y Z S x + R y Z S inv g R x Z S
82 6 25 78 81 mpbir3and R Rng S B Z S SubGrp R
83 eqid mulGrp R = mulGrp R
84 83 rngmgp Could not format ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) with typecode |-
85 83 1 mgpbas B = Base mulGrp R
86 85 sseq2i S B S Base mulGrp R
87 86 biimpi S B S Base mulGrp R
88 eqid Base mulGrp R = Base mulGrp R
89 2 fveq2i Cntz M = Cntz mulGrp R
90 3 89 eqtri Z = Cntz mulGrp R
91 eqid Z S = Z S
92 88 90 91 cntzsgrpcl Could not format ( ( ( mulGrp ` R ) e. Smgrp /\ S C_ ( Base ` ( mulGrp ` R ) ) ) -> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) : No typesetting found for |- ( ( ( mulGrp ` R ) e. Smgrp /\ S C_ ( Base ` ( mulGrp ` R ) ) ) -> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) with typecode |-
93 84 87 92 syl2an R Rng S B x Z S y Z S x + mulGrp R y Z S
94 83 10 mgpplusg R = + mulGrp R
95 94 oveqi x R y = x + mulGrp R y
96 95 eleq1i x R y Z S x + mulGrp R y Z S
97 96 2ralbii x Z S y Z S x R y Z S x Z S y Z S x + mulGrp R y Z S
98 93 97 sylibr R Rng S B x Z S y Z S x R y Z S
99 1 10 issubrng2 Could not format ( R e. Rng -> ( ( Z ` S ) e. ( SubRng ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) ) ) : No typesetting found for |- ( R e. Rng -> ( ( Z ` S ) e. ( SubRng ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) ) ) with typecode |-
100 99 adantr Could not format ( ( R e. Rng /\ S C_ B ) -> ( ( Z ` S ) e. ( SubRng ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) ) ) : No typesetting found for |- ( ( R e. Rng /\ S C_ B ) -> ( ( Z ` S ) e. ( SubRng ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) ) ) with typecode |-
101 82 98 100 mpbir2and Could not format ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) e. ( SubRng ` R ) ) : No typesetting found for |- ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) e. ( SubRng ` R ) ) with typecode |-