Metamath Proof Explorer


Theorem cnv0

Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998) Remove dependency on ax-sep , ax-nul , ax-pr . (Revised by KP, 25-Oct-2021)

Ref Expression
Assertion cnv0 -1 =

Proof

Step Hyp Ref Expression
1 br0 ¬ y z
2 1 intnan ¬ x = z y y z
3 2 nex ¬ y x = z y y z
4 3 nex ¬ z y x = z y y z
5 df-cnv -1 = z y | y z
6 df-opab z y | y z = x | z y x = z y y z
7 5 6 eqtri -1 = x | z y x = z y y z
8 7 abeq2i x -1 z y x = z y y z
9 4 8 mtbir ¬ x -1
10 9 nel0 -1 =