Metamath Proof Explorer


Theorem cnvbracl

Description: Closure of the converse of the bra function. (Contributed by NM, 26-May-2006) (New usage is discouraged.)

Ref Expression
Assertion cnvbracl T LinFn ContFn bra -1 T

Proof

Step Hyp Ref Expression
1 bra11 bra : 1-1 onto LinFn ContFn
2 f1ocnvdm bra : 1-1 onto LinFn ContFn T LinFn ContFn bra -1 T
3 1 2 mpan T LinFn ContFn bra -1 T