Metamath Proof Explorer


Theorem cnvbramul

Description: Multiplication property of the converse bra function. (Contributed by NM, 31-May-2006) (New usage is discouraged.)

Ref Expression
Assertion cnvbramul A T LinFn ContFn bra -1 A · fn T = A bra -1 T

Proof

Step Hyp Ref Expression
1 cnvbracl T LinFn ContFn bra -1 T
2 cjcl A A
3 brafnmul A bra -1 T bra A bra -1 T = A · fn bra bra -1 T
4 2 3 sylan A bra -1 T bra A bra -1 T = A · fn bra bra -1 T
5 cjcj A A = A
6 5 adantr A bra -1 T A = A
7 6 oveq1d A bra -1 T A · fn bra bra -1 T = A · fn bra bra -1 T
8 4 7 eqtrd A bra -1 T bra A bra -1 T = A · fn bra bra -1 T
9 1 8 sylan2 A T LinFn ContFn bra A bra -1 T = A · fn bra bra -1 T
10 bracnvbra T LinFn ContFn bra bra -1 T = T
11 10 oveq2d T LinFn ContFn A · fn bra bra -1 T = A · fn T
12 11 adantl A T LinFn ContFn A · fn bra bra -1 T = A · fn T
13 9 12 eqtrd A T LinFn ContFn bra A bra -1 T = A · fn T
14 13 fveq2d A T LinFn ContFn bra -1 bra A bra -1 T = bra -1 A · fn T
15 hvmulcl A bra -1 T A bra -1 T
16 2 1 15 syl2an A T LinFn ContFn A bra -1 T
17 cnvbrabra A bra -1 T bra -1 bra A bra -1 T = A bra -1 T
18 16 17 syl A T LinFn ContFn bra -1 bra A bra -1 T = A bra -1 T
19 14 18 eqtr3d A T LinFn ContFn bra -1 A · fn T = A bra -1 T