Metamath Proof Explorer


Theorem cnvbraval

Description: Value of the converse of the bra function. Based on the Riesz Lemma riesz4 , this very important theorem not only justifies the Dirac bra-ket notation, but allows us to extract a unique vector from any continuous linear functional from which the functional can be recovered; i.e. a single vector can "store"all of the information contained in any entire continuous linear functional (mapping from ~H to CC ). (Contributed by NM, 26-May-2006) (New usage is discouraged.)

Ref Expression
Assertion cnvbraval T LinFn ContFn bra -1 T = ι y | x T x = x ih y

Proof

Step Hyp Ref Expression
1 bra11 bra : 1-1 onto LinFn ContFn
2 f1ocnvfv bra : 1-1 onto LinFn ContFn y bra y = T bra -1 T = y
3 1 2 mpan y bra y = T bra -1 T = y
4 3 imp y bra y = T bra -1 T = y
5 4 oveq2d y bra y = T x ih bra -1 T = x ih y
6 5 adantll T LinFn ContFn x y bra y = T x ih bra -1 T = x ih y
7 braval y x bra y x = x ih y
8 7 ancoms x y bra y x = x ih y
9 8 adantll T LinFn ContFn x y bra y x = x ih y
10 9 adantr T LinFn ContFn x y bra y = T bra y x = x ih y
11 fveq1 bra y = T bra y x = T x
12 11 adantl T LinFn ContFn x y bra y = T bra y x = T x
13 6 10 12 3eqtr2rd T LinFn ContFn x y bra y = T T x = x ih bra -1 T
14 rnbra ran bra = LinFn ContFn
15 14 eleq2i T ran bra T LinFn ContFn
16 f1of bra : 1-1 onto LinFn ContFn bra : LinFn ContFn
17 1 16 ax-mp bra : LinFn ContFn
18 ffn bra : LinFn ContFn bra Fn
19 17 18 ax-mp bra Fn
20 fvelrnb bra Fn T ran bra y bra y = T
21 19 20 ax-mp T ran bra y bra y = T
22 15 21 sylbb1 T LinFn ContFn y bra y = T
23 22 adantr T LinFn ContFn x y bra y = T
24 13 23 r19.29a T LinFn ContFn x T x = x ih bra -1 T
25 24 ralrimiva T LinFn ContFn x T x = x ih bra -1 T
26 f1ocnvdm bra : 1-1 onto LinFn ContFn T LinFn ContFn bra -1 T
27 1 26 mpan T LinFn ContFn bra -1 T
28 riesz4 T LinFn ContFn ∃! y x T x = x ih y
29 oveq2 y = bra -1 T x ih y = x ih bra -1 T
30 29 eqeq2d y = bra -1 T T x = x ih y T x = x ih bra -1 T
31 30 ralbidv y = bra -1 T x T x = x ih y x T x = x ih bra -1 T
32 31 riota2 bra -1 T ∃! y x T x = x ih y x T x = x ih bra -1 T ι y | x T x = x ih y = bra -1 T
33 27 28 32 syl2anc T LinFn ContFn x T x = x ih bra -1 T ι y | x T x = x ih y = bra -1 T
34 25 33 mpbid T LinFn ContFn ι y | x T x = x ih y = bra -1 T
35 34 eqcomd T LinFn ContFn bra -1 T = ι y | x T x = x ih y