Description: Value of the converse of the bra function. Based on the Riesz Lemma riesz4 , this very important theorem not only justifies the Dirac bra-ket notation, but allows to extract a unique vector from any continuous linear functional from which the functional can be recovered; i.e. a single vector can "store"all of the information contained in any entire continuous linear functional (mapping from ~H to CC ). (Contributed by NM, 26-May-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvbraval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bra11 | |
|
2 | f1ocnvfv | |
|
3 | 1 2 | mpan | |
4 | 3 | imp | |
5 | 4 | oveq2d | |
6 | 5 | adantll | |
7 | braval | |
|
8 | 7 | ancoms | |
9 | 8 | adantll | |
10 | 9 | adantr | |
11 | fveq1 | |
|
12 | 11 | adantl | |
13 | 6 10 12 | 3eqtr2rd | |
14 | rnbra | |
|
15 | 14 | eleq2i | |
16 | f1of | |
|
17 | 1 16 | ax-mp | |
18 | ffn | |
|
19 | 17 18 | ax-mp | |
20 | fvelrnb | |
|
21 | 19 20 | ax-mp | |
22 | 15 21 | sylbb1 | |
23 | 22 | adantr | |
24 | 13 23 | r19.29a | |
25 | 24 | ralrimiva | |
26 | f1ocnvdm | |
|
27 | 1 26 | mpan | |
28 | riesz4 | |
|
29 | oveq2 | |
|
30 | 29 | eqeq2d | |
31 | 30 | ralbidv | |
32 | 31 | riota2 | |
33 | 27 28 32 | syl2anc | |
34 | 25 33 | mpbid | |
35 | 34 | eqcomd | |