Metamath Proof Explorer


Theorem cnvbraval

Description: Value of the converse of the bra function. Based on the Riesz Lemma riesz4 , this very important theorem not only justifies the Dirac bra-ket notation, but allows to extract a unique vector from any continuous linear functional from which the functional can be recovered; i.e. a single vector can "store"all of the information contained in any entire continuous linear functional (mapping from ~H to CC ). (Contributed by NM, 26-May-2006) (New usage is discouraged.)

Ref Expression
Assertion cnvbraval TLinFnContFnbra-1T=ιy|xTx=xihy

Proof

Step Hyp Ref Expression
1 bra11 bra:1-1 ontoLinFnContFn
2 f1ocnvfv bra:1-1 ontoLinFnContFnybray=Tbra-1T=y
3 1 2 mpan ybray=Tbra-1T=y
4 3 imp ybray=Tbra-1T=y
5 4 oveq2d ybray=Txihbra-1T=xihy
6 5 adantll TLinFnContFnxybray=Txihbra-1T=xihy
7 braval yxbrayx=xihy
8 7 ancoms xybrayx=xihy
9 8 adantll TLinFnContFnxybrayx=xihy
10 9 adantr TLinFnContFnxybray=Tbrayx=xihy
11 fveq1 bray=Tbrayx=Tx
12 11 adantl TLinFnContFnxybray=Tbrayx=Tx
13 6 10 12 3eqtr2rd TLinFnContFnxybray=TTx=xihbra-1T
14 rnbra ranbra=LinFnContFn
15 14 eleq2i TranbraTLinFnContFn
16 f1of bra:1-1 ontoLinFnContFnbra:LinFnContFn
17 1 16 ax-mp bra:LinFnContFn
18 ffn bra:LinFnContFnbraFn
19 17 18 ax-mp braFn
20 fvelrnb braFnTranbraybray=T
21 19 20 ax-mp Tranbraybray=T
22 15 21 sylbb1 TLinFnContFnybray=T
23 22 adantr TLinFnContFnxybray=T
24 13 23 r19.29a TLinFnContFnxTx=xihbra-1T
25 24 ralrimiva TLinFnContFnxTx=xihbra-1T
26 f1ocnvdm bra:1-1 ontoLinFnContFnTLinFnContFnbra-1T
27 1 26 mpan TLinFnContFnbra-1T
28 riesz4 TLinFnContFn∃!yxTx=xihy
29 oveq2 y=bra-1Txihy=xihbra-1T
30 29 eqeq2d y=bra-1TTx=xihyTx=xihbra-1T
31 30 ralbidv y=bra-1TxTx=xihyxTx=xihbra-1T
32 31 riota2 bra-1T∃!yxTx=xihyxTx=xihbra-1Tιy|xTx=xihy=bra-1T
33 27 28 32 syl2anc TLinFnContFnxTx=xihbra-1Tιy|xTx=xihy=bra-1T
34 25 33 mpbid TLinFnContFnιy|xTx=xihy=bra-1T
35 34 eqcomd TLinFnContFnbra-1T=ιy|xTx=xihy