Metamath Proof Explorer


Theorem cnvcnv3

Description: The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015)

Ref Expression
Assertion cnvcnv3 R -1 -1 = x y | x R y

Proof

Step Hyp Ref Expression
1 df-cnv R -1 -1 = x y | y R -1 x
2 vex y V
3 vex x V
4 2 3 brcnv y R -1 x x R y
5 4 opabbii x y | y R -1 x = x y | x R y
6 1 5 eqtri R -1 -1 = x y | x R y