Metamath Proof Explorer


Theorem cnvcnvres

Description: The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007)

Ref Expression
Assertion cnvcnvres AB-1-1=A-1-1B

Proof

Step Hyp Ref Expression
1 relres RelAB
2 dfrel2 RelABAB-1-1=AB
3 1 2 mpbi AB-1-1=AB
4 rescnvcnv A-1-1B=AB
5 3 4 eqtr4i AB-1-1=A-1-1B