Metamath Proof Explorer


Theorem cnvcnvss

Description: The double converse of a class is a subclass. Exercise 2 of TakeutiZaring p. 25. (Contributed by NM, 23-Jul-2004)

Ref Expression
Assertion cnvcnvss A -1 -1 A

Proof

Step Hyp Ref Expression
1 cnvcnv A -1 -1 = A V × V
2 inss1 A V × V A
3 1 2 eqsstri A -1 -1 A