Metamath Proof Explorer


Theorem cnvco

Description: Distributive law of converse over class composition. Theorem 26 of Suppes p. 64. (Contributed by NM, 19-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion cnvco A B -1 = B -1 A -1

Proof

Step Hyp Ref Expression
1 exancom z x B z z A y z z A y x B z
2 vex x V
3 vex y V
4 2 3 brco x A B y z x B z z A y
5 vex z V
6 3 5 brcnv y A -1 z z A y
7 5 2 brcnv z B -1 x x B z
8 6 7 anbi12i y A -1 z z B -1 x z A y x B z
9 8 exbii z y A -1 z z B -1 x z z A y x B z
10 1 4 9 3bitr4i x A B y z y A -1 z z B -1 x
11 10 opabbii y x | x A B y = y x | z y A -1 z z B -1 x
12 df-cnv A B -1 = y x | x A B y
13 df-co B -1 A -1 = y x | z y A -1 z z B -1 x
14 11 12 13 3eqtr4i A B -1 = B -1 A -1