Metamath Proof Explorer


Theorem cnvco1

Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014)

Ref Expression
Assertion cnvco1 A-1B-1=B-1A

Proof

Step Hyp Ref Expression
1 relcnv RelA-1B-1
2 relco RelB-1A
3 vex zV
4 vex yV
5 3 4 brcnv zB-1yyBz
6 5 bicomi yBzzB-1y
7 vex xV
8 3 7 brcnv zA-1xxAz
9 6 8 anbi12ci yBzzA-1xxAzzB-1y
10 9 exbii zyBzzA-1xzxAzzB-1y
11 7 4 opelcnv xyA-1B-1yxA-1B
12 4 7 opelco yxA-1BzyBzzA-1x
13 11 12 bitri xyA-1B-1zyBzzA-1x
14 7 4 opelco xyB-1AzxAzzB-1y
15 10 13 14 3bitr4i xyA-1B-1xyB-1A
16 1 2 15 eqrelriiv A-1B-1=B-1A