Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
cnvct
Next ⟩
fndmeng
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnvct
Description:
If a set is countable, so is its converse.
(Contributed by
Thierry Arnoux
, 29-Dec-2016)
Ref
Expression
Assertion
cnvct
⊢
A
≼
ω
→
A
-1
≼
ω
Proof
Step
Hyp
Ref
Expression
1
relcnv
⊢
Rel
⁡
A
-1
2
ctex
⊢
A
≼
ω
→
A
∈
V
3
cnvexg
⊢
A
∈
V
→
A
-1
∈
V
4
2
3
syl
⊢
A
≼
ω
→
A
-1
∈
V
5
cnven
⊢
Rel
⁡
A
-1
∧
A
-1
∈
V
→
A
-1
≈
A
-1
-1
6
1
4
5
sylancr
⊢
A
≼
ω
→
A
-1
≈
A
-1
-1
7
cnvcnvss
⊢
A
-1
-1
⊆
A
8
ssdomg
⊢
A
∈
V
→
A
-1
-1
⊆
A
→
A
-1
-1
≼
A
9
2
7
8
mpisyl
⊢
A
≼
ω
→
A
-1
-1
≼
A
10
endomtr
⊢
A
-1
≈
A
-1
-1
∧
A
-1
-1
≼
A
→
A
-1
≼
A
11
6
9
10
syl2anc
⊢
A
≼
ω
→
A
-1
≼
A
12
domtr
⊢
A
-1
≼
A
∧
A
≼
ω
→
A
-1
≼
ω
13
11
12
mpancom
⊢
A
≼
ω
→
A
-1
≼
ω