Metamath Proof Explorer


Theorem cnvdif

Description: Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion cnvdif A B -1 = A -1 B -1

Proof

Step Hyp Ref Expression
1 relcnv Rel A B -1
2 difss A -1 B -1 A -1
3 relcnv Rel A -1
4 relss A -1 B -1 A -1 Rel A -1 Rel A -1 B -1
5 2 3 4 mp2 Rel A -1 B -1
6 eldif y x A B y x A ¬ y x B
7 vex x V
8 vex y V
9 7 8 opelcnv x y A B -1 y x A B
10 eldif x y A -1 B -1 x y A -1 ¬ x y B -1
11 7 8 opelcnv x y A -1 y x A
12 7 8 opelcnv x y B -1 y x B
13 12 notbii ¬ x y B -1 ¬ y x B
14 11 13 anbi12i x y A -1 ¬ x y B -1 y x A ¬ y x B
15 10 14 bitri x y A -1 B -1 y x A ¬ y x B
16 6 9 15 3bitr4i x y A B -1 x y A -1 B -1
17 1 5 16 eqrelriiv A B -1 = A -1 B -1