Metamath Proof Explorer


Theorem cnven

Description: A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Assertion cnven Rel A A V A A -1

Proof

Step Hyp Ref Expression
1 simpr Rel A A V A V
2 cnvexg A V A -1 V
3 2 adantl Rel A A V A -1 V
4 cnvf1o Rel A x A x -1 : A 1-1 onto A -1
5 4 adantr Rel A A V x A x -1 : A 1-1 onto A -1
6 f1oen2g A V A -1 V x A x -1 : A 1-1 onto A -1 A A -1
7 1 3 5 6 syl3anc Rel A A V A A -1