Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
cnveq0
Next ⟩
dfrel3
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnveq0
Description:
A relation empty iff its converse is empty.
(Contributed by
FL
, 19-Sep-2011)
Ref
Expression
Assertion
cnveq0
⊢
Rel
⁡
A
→
A
=
∅
↔
A
-1
=
∅
Proof
Step
Hyp
Ref
Expression
1
cnv0
⊢
∅
-1
=
∅
2
rel0
⊢
Rel
⁡
∅
3
cnveqb
⊢
Rel
⁡
A
∧
Rel
⁡
∅
→
A
=
∅
↔
A
-1
=
∅
-1
4
2
3
mpan2
⊢
Rel
⁡
A
→
A
=
∅
↔
A
-1
=
∅
-1
5
eqeq2
⊢
∅
=
∅
-1
→
A
-1
=
∅
↔
A
-1
=
∅
-1
6
5
bibi2d
⊢
∅
=
∅
-1
→
A
=
∅
↔
A
-1
=
∅
↔
A
=
∅
↔
A
-1
=
∅
-1
7
4
6
syl5ibr
⊢
∅
=
∅
-1
→
Rel
⁡
A
→
A
=
∅
↔
A
-1
=
∅
8
7
eqcoms
⊢
∅
-1
=
∅
→
Rel
⁡
A
→
A
=
∅
↔
A
-1
=
∅
9
1
8
ax-mp
⊢
Rel
⁡
A
→
A
=
∅
↔
A
-1
=
∅