Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
cnveqb
Next ⟩
cnveq0
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnveqb
Description:
Equality theorem for converse.
(Contributed by
FL
, 19-Sep-2011)
Ref
Expression
Assertion
cnveqb
⊢
Rel
⁡
A
∧
Rel
⁡
B
→
A
=
B
↔
A
-1
=
B
-1
Proof
Step
Hyp
Ref
Expression
1
cnveq
⊢
A
=
B
→
A
-1
=
B
-1
2
dfrel2
⊢
Rel
⁡
A
↔
A
-1
-1
=
A
3
dfrel2
⊢
Rel
⁡
B
↔
B
-1
-1
=
B
4
cnveq
⊢
A
-1
=
B
-1
→
A
-1
-1
=
B
-1
-1
5
eqeq2
⊢
B
=
B
-1
-1
→
A
-1
-1
=
B
↔
A
-1
-1
=
B
-1
-1
6
4
5
syl5ibr
⊢
B
=
B
-1
-1
→
A
-1
=
B
-1
→
A
-1
-1
=
B
7
6
eqcoms
⊢
B
-1
-1
=
B
→
A
-1
=
B
-1
→
A
-1
-1
=
B
8
3
7
sylbi
⊢
Rel
⁡
B
→
A
-1
=
B
-1
→
A
-1
-1
=
B
9
eqeq1
⊢
A
=
A
-1
-1
→
A
=
B
↔
A
-1
-1
=
B
10
9
imbi2d
⊢
A
=
A
-1
-1
→
A
-1
=
B
-1
→
A
=
B
↔
A
-1
=
B
-1
→
A
-1
-1
=
B
11
8
10
syl5ibr
⊢
A
=
A
-1
-1
→
Rel
⁡
B
→
A
-1
=
B
-1
→
A
=
B
12
11
eqcoms
⊢
A
-1
-1
=
A
→
Rel
⁡
B
→
A
-1
=
B
-1
→
A
=
B
13
2
12
sylbi
⊢
Rel
⁡
A
→
Rel
⁡
B
→
A
-1
=
B
-1
→
A
=
B
14
13
imp
⊢
Rel
⁡
A
∧
Rel
⁡
B
→
A
-1
=
B
-1
→
A
=
B
15
1
14
impbid2
⊢
Rel
⁡
A
∧
Rel
⁡
B
→
A
=
B
↔
A
-1
=
B
-1