Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
cnveqd
Next ⟩
elcnv
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnveqd
Description:
Equality deduction for converse relation.
(Contributed by
NM
, 6-Dec-2013)
Ref
Expression
Hypothesis
cnveqd.1
⊢
φ
→
A
=
B
Assertion
cnveqd
⊢
φ
→
A
-1
=
B
-1
Proof
Step
Hyp
Ref
Expression
1
cnveqd.1
⊢
φ
→
A
=
B
2
cnveq
⊢
A
=
B
→
A
-1
=
B
-1
3
1
2
syl
⊢
φ
→
A
-1
=
B
-1