Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
cnveqi
Next ⟩
cnveqd
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnveqi
Description:
Equality inference for converse relation.
(Contributed by
NM
, 23-Dec-2008)
Ref
Expression
Hypothesis
cnveqi.1
⊢
A
=
B
Assertion
cnveqi
⊢
A
-1
=
B
-1
Proof
Step
Hyp
Ref
Expression
1
cnveqi.1
⊢
A
=
B
2
cnveq
⊢
A
=
B
→
A
-1
=
B
-1
3
1
2
ax-mp
⊢
A
-1
=
B
-1