Metamath Proof Explorer


Theorem cnvf1o

Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014)

Ref Expression
Assertion cnvf1o Rel A x A x -1 : A 1-1 onto A -1

Proof

Step Hyp Ref Expression
1 eqid x A x -1 = x A x -1
2 snex x V
3 2 cnvex x -1 V
4 3 uniex x -1 V
5 4 a1i Rel A x A x -1 V
6 snex y V
7 6 cnvex y -1 V
8 7 uniex y -1 V
9 8 a1i Rel A y A -1 y -1 V
10 cnvf1olem Rel A x A y = x -1 y A -1 x = y -1
11 relcnv Rel A -1
12 simpr Rel A y A -1 x = y -1 y A -1 x = y -1
13 cnvf1olem Rel A -1 y A -1 x = y -1 x A -1 -1 y = x -1
14 11 12 13 sylancr Rel A y A -1 x = y -1 x A -1 -1 y = x -1
15 dfrel2 Rel A A -1 -1 = A
16 eleq2 A -1 -1 = A x A -1 -1 x A
17 15 16 sylbi Rel A x A -1 -1 x A
18 17 anbi1d Rel A x A -1 -1 y = x -1 x A y = x -1
19 18 adantr Rel A y A -1 x = y -1 x A -1 -1 y = x -1 x A y = x -1
20 14 19 mpbid Rel A y A -1 x = y -1 x A y = x -1
21 10 20 impbida Rel A x A y = x -1 y A -1 x = y -1
22 1 5 9 21 f1od Rel A x A x -1 : A 1-1 onto A -1