Metamath Proof Explorer


Theorem cnvfiALT

Description: Shorter proof of cnvfi using ax-pow . (Contributed by Mario Carneiro, 28-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cnvfiALT A Fin A -1 Fin

Proof

Step Hyp Ref Expression
1 cnvcnvss A -1 -1 A
2 ssfi A Fin A -1 -1 A A -1 -1 Fin
3 1 2 mpan2 A Fin A -1 -1 Fin
4 relcnv Rel A -1
5 cnvexg A Fin A -1 V
6 cnven Rel A -1 A -1 V A -1 A -1 -1
7 4 5 6 sylancr A Fin A -1 A -1 -1
8 enfii A -1 -1 Fin A -1 A -1 -1 A -1 Fin
9 3 7 8 syl2anc A Fin A -1 Fin