Metamath Proof Explorer


Theorem cnvi

Description: The converse of the identity relation. Theorem 3.7(ii) of Monk1 p. 36. (Contributed by NM, 26-Apr-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion cnvi I -1 = I

Proof

Step Hyp Ref Expression
1 vex x V
2 1 ideq y I x y = x
3 equcom y = x x = y
4 2 3 bitri y I x x = y
5 4 opabbii x y | y I x = x y | x = y
6 df-cnv I -1 = x y | y I x
7 df-id I = x y | x = y
8 5 6 7 3eqtr4i I -1 = I