Metamath Proof Explorer


Theorem cnvimamptfin

Description: A preimage of a mapping with a finite domain under any class is finite. In contrast to fisuppfi , the range of the mapping needs not to be known. (Contributed by AV, 21-Dec-2018)

Ref Expression
Hypothesis cnvimamptfin.n φ N Fin
Assertion cnvimamptfin φ p N X -1 Y Fin

Proof

Step Hyp Ref Expression
1 cnvimamptfin.n φ N Fin
2 cnvimass p N X -1 Y dom p N X
3 eqid p N X = p N X
4 3 dmmptss dom p N X N
5 2 4 sstri p N X -1 Y N
6 ssfi N Fin p N X -1 Y N p N X -1 Y Fin
7 1 5 6 sylancl φ p N X -1 Y Fin