Metamath Proof Explorer


Theorem cnvimassrndm

Description: The preimage of a superset of the range of a class is the domain of the class. Generalization of cnvimarndm for subsets. (Contributed by AV, 18-Sep-2024)

Ref Expression
Assertion cnvimassrndm ran F A F -1 A = dom F

Proof

Step Hyp Ref Expression
1 ssequn1 ran F A ran F A = A
2 imaeq2 A = ran F A F -1 A = F -1 ran F A
3 imaundi F -1 ran F A = F -1 ran F F -1 A
4 2 3 eqtrdi A = ran F A F -1 A = F -1 ran F F -1 A
5 cnvimarndm F -1 ran F = dom F
6 5 uneq1i F -1 ran F F -1 A = dom F F -1 A
7 cnvimass F -1 A dom F
8 ssequn2 F -1 A dom F dom F F -1 A = dom F
9 7 8 mpbi dom F F -1 A = dom F
10 6 9 eqtri F -1 ran F F -1 A = dom F
11 4 10 eqtrdi A = ran F A F -1 A = dom F
12 11 eqcoms ran F A = A F -1 A = dom F
13 1 12 sylbi ran F A F -1 A = dom F