Metamath Proof Explorer


Theorem cnvin

Description: Distributive law for converse over intersection. Theorem 15 of Suppes p. 62. (Contributed by NM, 25-Mar-1998) (Revised by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion cnvin A B -1 = A -1 B -1

Proof

Step Hyp Ref Expression
1 cnvdif A A B -1 = A -1 A B -1
2 cnvdif A B -1 = A -1 B -1
3 2 difeq2i A -1 A B -1 = A -1 A -1 B -1
4 1 3 eqtri A A B -1 = A -1 A -1 B -1
5 dfin4 A B = A A B
6 5 cnveqi A B -1 = A A B -1
7 dfin4 A -1 B -1 = A -1 A -1 B -1
8 4 6 7 3eqtr4i A B -1 = A -1 B -1