Metamath Proof Explorer


Theorem cnvmot

Description: The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P = Base G
ismot.m - ˙ = dist G
motgrp.1 φ G V
motco.2 φ F G Ismt G
Assertion cnvmot φ F -1 G Ismt G

Proof

Step Hyp Ref Expression
1 ismot.p P = Base G
2 ismot.m - ˙ = dist G
3 motgrp.1 φ G V
4 motco.2 φ F G Ismt G
5 1 2 3 4 motf1o φ F : P 1-1 onto P
6 f1ocnv F : P 1-1 onto P F -1 : P 1-1 onto P
7 5 6 syl φ F -1 : P 1-1 onto P
8 3 adantr φ a P b P G V
9 f1of F -1 : P 1-1 onto P F -1 : P P
10 7 9 syl φ F -1 : P P
11 10 adantr φ a P b P F -1 : P P
12 simprl φ a P b P a P
13 11 12 ffvelrnd φ a P b P F -1 a P
14 simprr φ a P b P b P
15 11 14 ffvelrnd φ a P b P F -1 b P
16 4 adantr φ a P b P F G Ismt G
17 1 2 8 13 15 16 motcgr φ a P b P F F -1 a - ˙ F F -1 b = F -1 a - ˙ F -1 b
18 f1ocnvfv2 F : P 1-1 onto P a P F F -1 a = a
19 5 12 18 syl2an2r φ a P b P F F -1 a = a
20 f1ocnvfv2 F : P 1-1 onto P b P F F -1 b = b
21 5 14 20 syl2an2r φ a P b P F F -1 b = b
22 19 21 oveq12d φ a P b P F F -1 a - ˙ F F -1 b = a - ˙ b
23 17 22 eqtr3d φ a P b P F -1 a - ˙ F -1 b = a - ˙ b
24 23 ralrimivva φ a P b P F -1 a - ˙ F -1 b = a - ˙ b
25 1 2 ismot G V F -1 G Ismt G F -1 : P 1-1 onto P a P b P F -1 a - ˙ F -1 b = a - ˙ b
26 3 25 syl φ F -1 G Ismt G F -1 : P 1-1 onto P a P b P F -1 a - ˙ F -1 b = a - ˙ b
27 7 24 26 mpbir2and φ F -1 G Ismt G