Metamath Proof Explorer


Theorem cnvoprab

Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017) (Proof shortened by Thierry Arnoux, 20-Feb-2022)

Ref Expression
Hypotheses cnvoprab.1 a = x y ψ φ
cnvoprab.2 ψ a V × V
Assertion cnvoprab x y z | φ -1 = z a | ψ

Proof

Step Hyp Ref Expression
1 cnvoprab.1 a = x y ψ φ
2 cnvoprab.2 ψ a V × V
3 1 dfoprab3 a z | a V × V ψ = x y z | φ
4 3 cnveqi a z | a V × V ψ -1 = x y z | φ -1
5 cnvopab a z | a V × V ψ -1 = z a | a V × V ψ
6 inopab z a | a V × V z a | ψ = z a | a V × V ψ
7 2 ssopab2i z a | ψ z a | a V × V
8 sseqin2 z a | ψ z a | a V × V z a | a V × V z a | ψ = z a | ψ
9 7 8 mpbi z a | a V × V z a | ψ = z a | ψ
10 5 6 9 3eqtr2i a z | a V × V ψ -1 = z a | ψ
11 4 10 eqtr3i x y z | φ -1 = z a | ψ