Metamath Proof Explorer


Theorem cnvpsb

Description: The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009)

Ref Expression
Assertion cnvpsb Rel R R PosetRel R -1 PosetRel

Proof

Step Hyp Ref Expression
1 cnvps R PosetRel R -1 PosetRel
2 cnvps R -1 PosetRel R -1 -1 PosetRel
3 dfrel2 Rel R R -1 -1 = R
4 eleq1 R -1 -1 = R R -1 -1 PosetRel R PosetRel
5 4 biimpd R -1 -1 = R R -1 -1 PosetRel R PosetRel
6 3 5 sylbi Rel R R -1 -1 PosetRel R PosetRel
7 2 6 syl5 Rel R R -1 PosetRel R PosetRel
8 1 7 impbid2 Rel R R PosetRel R -1 PosetRel