Metamath Proof Explorer


Theorem cnvrescnv

Description: Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023)

Ref Expression
Assertion cnvrescnv R -1 B -1 = R V × B

Proof

Step Hyp Ref Expression
1 df-res R -1 B = R -1 B × V
2 1 cnveqi R -1 B -1 = R -1 B × V -1
3 cnvin R -1 B × V -1 = R -1 -1 B × V -1
4 cnvcnv R -1 -1 = R V × V
5 cnvxp B × V -1 = V × B
6 4 5 ineq12i R -1 -1 B × V -1 = R V × V V × B
7 inass R V × V V × B = R V × V V × B
8 inxp V × V V × B = V V × V B
9 inv1 V V = V
10 9 eqcomi V = V V
11 ssv B V
12 ssid B B
13 11 12 ssini B V B
14 inss2 V B B
15 13 14 eqssi B = V B
16 10 15 xpeq12i V × B = V V × V B
17 8 16 eqtr4i V × V V × B = V × B
18 17 ineq2i R V × V V × B = R V × B
19 6 7 18 3eqtri R -1 -1 B × V -1 = R V × B
20 2 3 19 3eqtri R -1 B -1 = R V × B