Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
cnvrescnv
Next ⟩
cnveqb
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnvrescnv
Description:
Two ways to express the corestriction of a class.
(Contributed by
BJ
, 28-Dec-2023)
Ref
Expression
Assertion
cnvrescnv
⊢
R
-1
↾
B
-1
=
R
∩
V
×
B
Proof
Step
Hyp
Ref
Expression
1
df-res
⊢
R
-1
↾
B
=
R
-1
∩
B
×
V
2
1
cnveqi
⊢
R
-1
↾
B
-1
=
R
-1
∩
B
×
V
-1
3
cnvin
⊢
R
-1
∩
B
×
V
-1
=
R
-1
-1
∩
B
×
V
-1
4
cnvcnv
⊢
R
-1
-1
=
R
∩
V
×
V
5
cnvxp
⊢
B
×
V
-1
=
V
×
B
6
4
5
ineq12i
⊢
R
-1
-1
∩
B
×
V
-1
=
R
∩
V
×
V
∩
V
×
B
7
inass
⊢
R
∩
V
×
V
∩
V
×
B
=
R
∩
V
×
V
∩
V
×
B
8
inxp
⊢
V
×
V
∩
V
×
B
=
V
∩
V
×
V
∩
B
9
inv1
⊢
V
∩
V
=
V
10
9
eqcomi
⊢
V
=
V
∩
V
11
ssv
⊢
B
⊆
V
12
ssid
⊢
B
⊆
B
13
11
12
ssini
⊢
B
⊆
V
∩
B
14
inss2
⊢
V
∩
B
⊆
B
15
13
14
eqssi
⊢
B
=
V
∩
B
16
10
15
xpeq12i
⊢
V
×
B
=
V
∩
V
×
V
∩
B
17
8
16
eqtr4i
⊢
V
×
V
∩
V
×
B
=
V
×
B
18
17
ineq2i
⊢
R
∩
V
×
V
∩
V
×
B
=
R
∩
V
×
B
19
6
7
18
3eqtri
⊢
R
-1
-1
∩
B
×
V
-1
=
R
∩
V
×
B
20
2
3
19
3eqtri
⊢
R
-1
↾
B
-1
=
R
∩
V
×
B