Metamath Proof Explorer


Theorem cnvresima

Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009)

Ref Expression
Assertion cnvresima F A -1 B = F -1 B A

Proof

Step Hyp Ref Expression
1 19.41v s s B s t F -1 t A s s B s t F -1 t A
2 vex s V
3 2 opelresi t s F A t A t s F
4 vex t V
5 2 4 opelcnv s t F A -1 t s F A
6 2 4 opelcnv s t F -1 t s F
7 6 anbi2ci s t F -1 t A t A t s F
8 3 5 7 3bitr4i s t F A -1 s t F -1 t A
9 8 bianass s B s t F A -1 s B s t F -1 t A
10 9 exbii s s B s t F A -1 s s B s t F -1 t A
11 4 elima3 t F -1 B s s B s t F -1
12 11 anbi1i t F -1 B t A s s B s t F -1 t A
13 1 10 12 3bitr4i s s B s t F A -1 t F -1 B t A
14 4 elima3 t F A -1 B s s B s t F A -1
15 elin t F -1 B A t F -1 B t A
16 13 14 15 3bitr4i t F A -1 B t F -1 B A
17 16 eqriv F A -1 B = F -1 B A