Metamath Proof Explorer


Theorem cnvsn

Description: Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998) (Revised by Mario Carneiro, 26-Apr-2015) (Proof shortened by BJ, 12-Feb-2022)

Ref Expression
Hypotheses cnvsn.1 A V
cnvsn.2 B V
Assertion cnvsn A B -1 = B A

Proof

Step Hyp Ref Expression
1 cnvsn.1 A V
2 cnvsn.2 B V
3 cnvsng A V B V A B -1 = B A
4 1 2 3 mp2an A B -1 = B A