Metamath Proof Explorer


Theorem cnvsymOLD

Description: Obsolete proof of cnvsym as of 29-Dec-2024. (Contributed by NM, 28-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by SN, 23-Dec-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cnvsymOLD R -1 R x y x R y y R x

Proof

Step Hyp Ref Expression
1 relcnv Rel R -1
2 ssrel3 Rel R -1 R -1 R y x y R -1 x y R x
3 1 2 ax-mp R -1 R y x y R -1 x y R x
4 alcom y x y R -1 x y R x x y y R -1 x y R x
5 vex y V
6 vex x V
7 5 6 brcnv y R -1 x x R y
8 7 imbi1i y R -1 x y R x x R y y R x
9 8 2albii x y y R -1 x y R x x y x R y y R x
10 3 4 9 3bitri R -1 R x y x R y y R x