Metamath Proof Explorer


Theorem cnvun

Description: The converse of a union is the union of converses. Theorem 16 of Suppes p. 62. (Contributed by NM, 25-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion cnvun A B -1 = A -1 B -1

Proof

Step Hyp Ref Expression
1 df-cnv A B -1 = x y | y A B x
2 unopab x y | y A x x y | y B x = x y | y A x y B x
3 brun y A B x y A x y B x
4 3 opabbii x y | y A B x = x y | y A x y B x
5 2 4 eqtr4i x y | y A x x y | y B x = x y | y A B x
6 1 5 eqtr4i A B -1 = x y | y A x x y | y B x
7 df-cnv A -1 = x y | y A x
8 df-cnv B -1 = x y | y B x
9 7 8 uneq12i A -1 B -1 = x y | y A x x y | y B x
10 6 9 eqtr4i A B -1 = A -1 B -1