Metamath Proof Explorer


Theorem cnvuni

Description: The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004)

Ref Expression
Assertion cnvuni A -1 = x A x -1

Proof

Step Hyp Ref Expression
1 elcnv2 y A -1 z w y = z w w z A
2 eluni2 w z A x A w z x
3 2 anbi2i y = z w w z A y = z w x A w z x
4 r19.42v x A y = z w w z x y = z w x A w z x
5 3 4 bitr4i y = z w w z A x A y = z w w z x
6 5 2exbii z w y = z w w z A z w x A y = z w w z x
7 elcnv2 y x -1 z w y = z w w z x
8 7 rexbii x A y x -1 x A z w y = z w w z x
9 rexcom4 x A z w y = z w w z x z x A w y = z w w z x
10 rexcom4 x A w y = z w w z x w x A y = z w w z x
11 10 exbii z x A w y = z w w z x z w x A y = z w w z x
12 8 9 11 3bitrri z w x A y = z w w z x x A y x -1
13 1 6 12 3bitri y A -1 x A y x -1
14 eliun y x A x -1 x A y x -1
15 13 14 bitr4i y A -1 y x A x -1
16 15 eqriv A -1 = x A x -1