Metamath Proof Explorer


Theorem cnvunop

Description: The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in AkhiezerGlazman p. 72. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion cnvunop T UniOp T -1 UniOp

Proof

Step Hyp Ref Expression
1 unopf1o T UniOp T : 1-1 onto
2 f1ocnv T : 1-1 onto T -1 : 1-1 onto
3 f1ofo T -1 : 1-1 onto T -1 : onto
4 2 3 syl T : 1-1 onto T -1 : onto
5 1 4 syl T UniOp T -1 : onto
6 simpl T UniOp x y T UniOp
7 fof T -1 : onto T -1 :
8 5 7 syl T UniOp T -1 :
9 8 ffvelrnda T UniOp x T -1 x
10 9 adantrr T UniOp x y T -1 x
11 8 ffvelrnda T UniOp y T -1 y
12 11 adantrl T UniOp x y T -1 y
13 unop T UniOp T -1 x T -1 y T T -1 x ih T T -1 y = T -1 x ih T -1 y
14 6 10 12 13 syl3anc T UniOp x y T T -1 x ih T T -1 y = T -1 x ih T -1 y
15 f1ocnvfv2 T : 1-1 onto x T T -1 x = x
16 15 adantrr T : 1-1 onto x y T T -1 x = x
17 f1ocnvfv2 T : 1-1 onto y T T -1 y = y
18 17 adantrl T : 1-1 onto x y T T -1 y = y
19 16 18 oveq12d T : 1-1 onto x y T T -1 x ih T T -1 y = x ih y
20 1 19 sylan T UniOp x y T T -1 x ih T T -1 y = x ih y
21 14 20 eqtr3d T UniOp x y T -1 x ih T -1 y = x ih y
22 21 ralrimivva T UniOp x y T -1 x ih T -1 y = x ih y
23 elunop T -1 UniOp T -1 : onto x y T -1 x ih T -1 y = x ih y
24 5 22 23 sylanbrc T UniOp T -1 UniOp