Metamath Proof Explorer


Theorem cnvxp

Description: The converse of a Cartesian product. Exercise 11 of Suppes p. 67. (Contributed by NM, 14-Aug-1999) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion cnvxp A×B-1=B×A

Proof

Step Hyp Ref Expression
1 cnvopab yx|yAxB-1=xy|yAxB
2 ancom yAxBxByA
3 2 opabbii xy|yAxB=xy|xByA
4 1 3 eqtri yx|yAxB-1=xy|xByA
5 df-xp A×B=yx|yAxB
6 5 cnveqi A×B-1=yx|yAxB-1
7 df-xp B×A=xy|xByA
8 4 6 7 3eqtr4i A×B-1=B×A