Metamath Proof Explorer


Theorem cnvxp

Description: The converse of a Cartesian product. Exercise 11 of Suppes p. 67. (Contributed by NM, 14-Aug-1999) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion cnvxp A × B -1 = B × A

Proof

Step Hyp Ref Expression
1 cnvopab y x | y A x B -1 = x y | y A x B
2 ancom y A x B x B y A
3 2 opabbii x y | y A x B = x y | x B y A
4 1 3 eqtri y x | y A x B -1 = x y | x B y A
5 df-xp A × B = y x | y A x B
6 5 cnveqi A × B -1 = y x | y A x B -1
7 df-xp B × A = x y | x B y A
8 4 6 7 3eqtr4i A × B -1 = B × A