Metamath Proof Explorer


Theorem co01

Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion co01 A =

Proof

Step Hyp Ref Expression
1 cnv0 -1 =
2 cnvco A -1 = A -1 -1
3 1 coeq2i A -1 -1 = A -1
4 co02 A -1 =
5 2 3 4 3eqtri A -1 =
6 1 5 eqtr4i -1 = A -1
7 6 cnveqi -1 -1 = A -1 -1
8 rel0 Rel
9 dfrel2 Rel -1 -1 =
10 8 9 mpbi -1 -1 =
11 relco Rel A
12 dfrel2 Rel A A -1 -1 = A
13 11 12 mpbi A -1 -1 = A
14 7 10 13 3eqtr3ri A =