Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
co01
Next ⟩
coi1
Metamath Proof Explorer
Ascii
Unicode
Theorem
co01
Description:
Composition with the empty set.
(Contributed by
NM
, 24-Apr-2004)
Ref
Expression
Assertion
co01
⊢
∅
∘
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
cnv0
⊢
∅
-1
=
∅
2
cnvco
⊢
∅
∘
A
-1
=
A
-1
∘
∅
-1
3
1
coeq2i
⊢
A
-1
∘
∅
-1
=
A
-1
∘
∅
4
co02
⊢
A
-1
∘
∅
=
∅
5
2
3
4
3eqtri
⊢
∅
∘
A
-1
=
∅
6
1
5
eqtr4i
⊢
∅
-1
=
∅
∘
A
-1
7
6
cnveqi
⊢
∅
-1
-1
=
∅
∘
A
-1
-1
8
rel0
⊢
Rel
⁡
∅
9
dfrel2
⊢
Rel
⁡
∅
↔
∅
-1
-1
=
∅
10
8
9
mpbi
⊢
∅
-1
-1
=
∅
11
relco
⊢
Rel
⁡
∅
∘
A
12
dfrel2
⊢
Rel
⁡
∅
∘
A
↔
∅
∘
A
-1
-1
=
∅
∘
A
13
11
12
mpbi
⊢
∅
∘
A
-1
-1
=
∅
∘
A
14
7
10
13
3eqtr3ri
⊢
∅
∘
A
=
∅