Metamath Proof Explorer


Theorem co02

Description: Composition with the empty set. Theorem 20 of Suppes p. 63. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion co02 A =

Proof

Step Hyp Ref Expression
1 relco Rel A
2 rel0 Rel
3 br0 ¬ x z
4 3 intnanr ¬ x z z A y
5 4 nex ¬ z x z z A y
6 vex x V
7 vex y V
8 6 7 opelco x y A z x z z A y
9 5 8 mtbir ¬ x y A
10 noel ¬ x y
11 9 10 2false x y A x y
12 1 2 11 eqrelriiv A =