Step |
Hyp |
Ref |
Expression |
1 |
|
coe1add.y |
|
2 |
|
coe1add.b |
|
3 |
|
coe1add.p |
|
4 |
|
coe1add.q |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
1 6 2
|
ply1bas |
|
8 |
1 5 3
|
ply1plusg |
|
9 |
|
simp2 |
|
10 |
|
simp3 |
|
11 |
5 7 4 8 9 10
|
mpladd |
|
12 |
11
|
coeq1d |
|
13 |
|
eqid |
|
14 |
1 2 13
|
ply1basf |
|
15 |
14
|
ffnd |
|
16 |
15
|
3ad2ant2 |
|
17 |
1 2 13
|
ply1basf |
|
18 |
17
|
ffnd |
|
19 |
18
|
3ad2ant3 |
|
20 |
|
df1o2 |
|
21 |
|
nn0ex |
|
22 |
|
0ex |
|
23 |
|
eqid |
|
24 |
20 21 22 23
|
mapsnf1o3 |
|
25 |
|
f1of |
|
26 |
24 25
|
mp1i |
|
27 |
|
ovexd |
|
28 |
21
|
a1i |
|
29 |
|
inidm |
|
30 |
16 19 26 27 27 28 29
|
ofco |
|
31 |
12 30
|
eqtrd |
|
32 |
1
|
ply1ring |
|
33 |
2 3
|
ringacl |
|
34 |
32 33
|
syl3an1 |
|
35 |
|
eqid |
|
36 |
35 2 1 23
|
coe1fval2 |
|
37 |
34 36
|
syl |
|
38 |
|
eqid |
|
39 |
38 2 1 23
|
coe1fval2 |
|
40 |
39
|
3ad2ant2 |
|
41 |
|
eqid |
|
42 |
41 2 1 23
|
coe1fval2 |
|
43 |
42
|
3ad2ant3 |
|
44 |
40 43
|
oveq12d |
|
45 |
31 37 44
|
3eqtr4d |
|