Step |
Hyp |
Ref |
Expression |
1 |
|
coe1add.y |
|
2 |
|
coe1add.b |
|
3 |
|
coe1add.p |
|
4 |
|
coe1add.q |
|
5 |
|
eqid |
|
6 |
1 2
|
ply1bas |
|
7 |
1 5 3
|
ply1plusg |
|
8 |
|
simp2 |
|
9 |
|
simp3 |
|
10 |
5 6 4 7 8 9
|
mpladd |
|
11 |
10
|
coeq1d |
|
12 |
|
eqid |
|
13 |
1 2 12
|
ply1basf |
|
14 |
13
|
ffnd |
|
15 |
14
|
3ad2ant2 |
|
16 |
1 2 12
|
ply1basf |
|
17 |
16
|
ffnd |
|
18 |
17
|
3ad2ant3 |
|
19 |
|
df1o2 |
|
20 |
|
nn0ex |
|
21 |
|
0ex |
|
22 |
|
eqid |
|
23 |
19 20 21 22
|
mapsnf1o3 |
|
24 |
|
f1of |
|
25 |
23 24
|
mp1i |
|
26 |
|
ovexd |
|
27 |
20
|
a1i |
|
28 |
|
inidm |
|
29 |
15 18 25 26 26 27 28
|
ofco |
|
30 |
11 29
|
eqtrd |
|
31 |
1
|
ply1ring |
|
32 |
2 3
|
ringacl |
|
33 |
31 32
|
syl3an1 |
|
34 |
|
eqid |
|
35 |
34 2 1 22
|
coe1fval2 |
|
36 |
33 35
|
syl |
|
37 |
|
eqid |
|
38 |
37 2 1 22
|
coe1fval2 |
|
39 |
38
|
3ad2ant2 |
|
40 |
|
eqid |
|
41 |
40 2 1 22
|
coe1fval2 |
|
42 |
41
|
3ad2ant3 |
|
43 |
39 42
|
oveq12d |
|
44 |
30 36 43
|
3eqtr4d |
|