Metamath Proof Explorer


Theorem coe1addfv

Description: A particular coefficient of an addition. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses coe1add.y Y = Poly 1 R
coe1add.b B = Base Y
coe1add.p ˙ = + Y
coe1add.q + ˙ = + R
Assertion coe1addfv R Ring F B G B X 0 coe 1 F ˙ G X = coe 1 F X + ˙ coe 1 G X

Proof

Step Hyp Ref Expression
1 coe1add.y Y = Poly 1 R
2 coe1add.b B = Base Y
3 coe1add.p ˙ = + Y
4 coe1add.q + ˙ = + R
5 1 2 3 4 coe1add R Ring F B G B coe 1 F ˙ G = coe 1 F + ˙ f coe 1 G
6 5 adantr R Ring F B G B X 0 coe 1 F ˙ G = coe 1 F + ˙ f coe 1 G
7 6 fveq1d R Ring F B G B X 0 coe 1 F ˙ G X = coe 1 F + ˙ f coe 1 G X
8 eqid coe 1 F = coe 1 F
9 eqid Base R = Base R
10 8 2 1 9 coe1f F B coe 1 F : 0 Base R
11 10 ffnd F B coe 1 F Fn 0
12 11 3ad2ant2 R Ring F B G B coe 1 F Fn 0
13 12 adantr R Ring F B G B X 0 coe 1 F Fn 0
14 eqid coe 1 G = coe 1 G
15 14 2 1 9 coe1f G B coe 1 G : 0 Base R
16 15 ffnd G B coe 1 G Fn 0
17 16 3ad2ant3 R Ring F B G B coe 1 G Fn 0
18 17 adantr R Ring F B G B X 0 coe 1 G Fn 0
19 nn0ex 0 V
20 19 a1i R Ring F B G B X 0 0 V
21 simpr R Ring F B G B X 0 X 0
22 fnfvof coe 1 F Fn 0 coe 1 G Fn 0 0 V X 0 coe 1 F + ˙ f coe 1 G X = coe 1 F X + ˙ coe 1 G X
23 13 18 20 21 22 syl22anc R Ring F B G B X 0 coe 1 F + ˙ f coe 1 G X = coe 1 F X + ˙ coe 1 G X
24 7 23 eqtrd R Ring F B G B X 0 coe 1 F ˙ G X = coe 1 F X + ˙ coe 1 G X