Metamath Proof Explorer


Theorem coe1f

Description: Functionality of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses coe1fval.a A = coe 1 F
coe1f.b B = Base P
coe1f.p P = Poly 1 R
coe1f.k K = Base R
Assertion coe1f F B A : 0 K

Proof

Step Hyp Ref Expression
1 coe1fval.a A = coe 1 F
2 coe1f.b B = Base P
3 coe1f.p P = Poly 1 R
4 coe1f.k K = Base R
5 3 2 ply1bascl F B F Base PwSer 1 R
6 eqid Base PwSer 1 R = Base PwSer 1 R
7 eqid PwSer 1 R = PwSer 1 R
8 1 6 7 4 coe1f2 F Base PwSer 1 R A : 0 K
9 5 8 syl F B A : 0 K