Metamath Proof Explorer


Theorem coe1f2

Description: Functionality of univariate power series coefficient vectors. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses coe1fval.a A = coe 1 F
coe1f2.b B = Base P
coe1f2.p P = PwSer 1 R
coe1f2.k K = Base R
Assertion coe1f2 F B A : 0 K

Proof

Step Hyp Ref Expression
1 coe1fval.a A = coe 1 F
2 coe1f2.b B = Base P
3 coe1f2.p P = PwSer 1 R
4 coe1f2.k K = Base R
5 3 2 4 psr1basf F B F : 0 1 𝑜 K
6 df1o2 1 𝑜 =
7 nn0ex 0 V
8 0ex V
9 eqid x 0 1 𝑜 × x = x 0 1 𝑜 × x
10 6 7 8 9 mapsnf1o3 x 0 1 𝑜 × x : 0 1-1 onto 0 1 𝑜
11 f1of x 0 1 𝑜 × x : 0 1-1 onto 0 1 𝑜 x 0 1 𝑜 × x : 0 0 1 𝑜
12 10 11 ax-mp x 0 1 𝑜 × x : 0 0 1 𝑜
13 fco F : 0 1 𝑜 K x 0 1 𝑜 × x : 0 0 1 𝑜 F x 0 1 𝑜 × x : 0 K
14 5 12 13 sylancl F B F x 0 1 𝑜 × x : 0 K
15 1 2 3 9 coe1fval3 F B A = F x 0 1 𝑜 × x
16 15 feq1d F B A : 0 K F x 0 1 𝑜 × x : 0 K
17 14 16 mpbird F B A : 0 K