Metamath Proof Explorer


Theorem coe1fval3

Description: Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses coe1fval.a A = coe 1 F
coe1f2.b B = Base P
coe1f2.p P = PwSer 1 R
coe1fval3.g G = y 0 1 𝑜 × y
Assertion coe1fval3 F B A = F G

Proof

Step Hyp Ref Expression
1 coe1fval.a A = coe 1 F
2 coe1f2.b B = Base P
3 coe1f2.p P = PwSer 1 R
4 coe1fval3.g G = y 0 1 𝑜 × y
5 1 coe1fval F B A = y 0 F 1 𝑜 × y
6 eqid Base R = Base R
7 3 2 6 psr1basf F B F : 0 1 𝑜 Base R
8 ssv Base R V
9 fss F : 0 1 𝑜 Base R Base R V F : 0 1 𝑜 V
10 7 8 9 sylancl F B F : 0 1 𝑜 V
11 fconst6g y 0 1 𝑜 × y : 1 𝑜 0
12 11 adantl F : 0 1 𝑜 V y 0 1 𝑜 × y : 1 𝑜 0
13 nn0ex 0 V
14 1oex 1 𝑜 V
15 13 14 elmap 1 𝑜 × y 0 1 𝑜 1 𝑜 × y : 1 𝑜 0
16 12 15 sylibr F : 0 1 𝑜 V y 0 1 𝑜 × y 0 1 𝑜
17 4 a1i F : 0 1 𝑜 V G = y 0 1 𝑜 × y
18 id F : 0 1 𝑜 V F : 0 1 𝑜 V
19 18 feqmptd F : 0 1 𝑜 V F = x 0 1 𝑜 F x
20 fveq2 x = 1 𝑜 × y F x = F 1 𝑜 × y
21 16 17 19 20 fmptco F : 0 1 𝑜 V F G = y 0 F 1 𝑜 × y
22 10 21 syl F B F G = y 0 F 1 𝑜 × y
23 5 22 eqtr4d F B A = F G