Metamath Proof Explorer


Theorem coe1fzgsumd

Description: Value of an evaluated coefficient in a finite group sum of polynomials. (Contributed by AV, 8-Oct-2019)

Ref Expression
Hypotheses coe1fzgsumd.p P = Poly 1 R
coe1fzgsumd.b B = Base P
coe1fzgsumd.r φ R Ring
coe1fzgsumd.k φ K 0
coe1fzgsumd.m φ x N M B
coe1fzgsumd.n φ N Fin
Assertion coe1fzgsumd φ coe 1 P x N M K = R x N coe 1 M K

Proof

Step Hyp Ref Expression
1 coe1fzgsumd.p P = Poly 1 R
2 coe1fzgsumd.b B = Base P
3 coe1fzgsumd.r φ R Ring
4 coe1fzgsumd.k φ K 0
5 coe1fzgsumd.m φ x N M B
6 coe1fzgsumd.n φ N Fin
7 raleq n = x n M B x M B
8 7 anbi2d n = φ x n M B φ x M B
9 mpteq1 n = x n M = x M
10 9 oveq2d n = P x n M = P x M
11 10 fveq2d n = coe 1 P x n M = coe 1 P x M
12 11 fveq1d n = coe 1 P x n M K = coe 1 P x M K
13 mpteq1 n = x n coe 1 M K = x coe 1 M K
14 13 oveq2d n = R x n coe 1 M K = R x coe 1 M K
15 12 14 eqeq12d n = coe 1 P x n M K = R x n coe 1 M K coe 1 P x M K = R x coe 1 M K
16 8 15 imbi12d n = φ x n M B coe 1 P x n M K = R x n coe 1 M K φ x M B coe 1 P x M K = R x coe 1 M K
17 raleq n = m x n M B x m M B
18 17 anbi2d n = m φ x n M B φ x m M B
19 mpteq1 n = m x n M = x m M
20 19 oveq2d n = m P x n M = P x m M
21 20 fveq2d n = m coe 1 P x n M = coe 1 P x m M
22 21 fveq1d n = m coe 1 P x n M K = coe 1 P x m M K
23 mpteq1 n = m x n coe 1 M K = x m coe 1 M K
24 23 oveq2d n = m R x n coe 1 M K = R x m coe 1 M K
25 22 24 eqeq12d n = m coe 1 P x n M K = R x n coe 1 M K coe 1 P x m M K = R x m coe 1 M K
26 18 25 imbi12d n = m φ x n M B coe 1 P x n M K = R x n coe 1 M K φ x m M B coe 1 P x m M K = R x m coe 1 M K
27 raleq n = m a x n M B x m a M B
28 27 anbi2d n = m a φ x n M B φ x m a M B
29 mpteq1 n = m a x n M = x m a M
30 29 oveq2d n = m a P x n M = P x m a M
31 30 fveq2d n = m a coe 1 P x n M = coe 1 P x m a M
32 31 fveq1d n = m a coe 1 P x n M K = coe 1 P x m a M K
33 mpteq1 n = m a x n coe 1 M K = x m a coe 1 M K
34 33 oveq2d n = m a R x n coe 1 M K = R x m a coe 1 M K
35 32 34 eqeq12d n = m a coe 1 P x n M K = R x n coe 1 M K coe 1 P x m a M K = R x m a coe 1 M K
36 28 35 imbi12d n = m a φ x n M B coe 1 P x n M K = R x n coe 1 M K φ x m a M B coe 1 P x m a M K = R x m a coe 1 M K
37 raleq n = N x n M B x N M B
38 37 anbi2d n = N φ x n M B φ x N M B
39 mpteq1 n = N x n M = x N M
40 39 oveq2d n = N P x n M = P x N M
41 40 fveq2d n = N coe 1 P x n M = coe 1 P x N M
42 41 fveq1d n = N coe 1 P x n M K = coe 1 P x N M K
43 mpteq1 n = N x n coe 1 M K = x N coe 1 M K
44 43 oveq2d n = N R x n coe 1 M K = R x N coe 1 M K
45 42 44 eqeq12d n = N coe 1 P x n M K = R x n coe 1 M K coe 1 P x N M K = R x N coe 1 M K
46 38 45 imbi12d n = N φ x n M B coe 1 P x n M K = R x n coe 1 M K φ x N M B coe 1 P x N M K = R x N coe 1 M K
47 mpt0 x M =
48 47 oveq2i P x M = P
49 eqid 0 P = 0 P
50 49 gsum0 P = 0 P
51 48 50 eqtri P x M = 0 P
52 51 fveq2i coe 1 P x M = coe 1 0 P
53 52 a1i φ coe 1 P x M = coe 1 0 P
54 53 fveq1d φ coe 1 P x M K = coe 1 0 P K
55 eqid 0 R = 0 R
56 1 49 55 coe1z R Ring coe 1 0 P = 0 × 0 R
57 3 56 syl φ coe 1 0 P = 0 × 0 R
58 57 fveq1d φ coe 1 0 P K = 0 × 0 R K
59 fvex 0 R V
60 fvconst2g 0 R V K 0 0 × 0 R K = 0 R
61 59 4 60 sylancr φ 0 × 0 R K = 0 R
62 54 58 61 3eqtrd φ coe 1 P x M K = 0 R
63 mpt0 x coe 1 M K =
64 63 oveq2i R x coe 1 M K = R
65 55 gsum0 R = 0 R
66 64 65 eqtri R x coe 1 M K = 0 R
67 62 66 eqtr4di φ coe 1 P x M K = R x coe 1 M K
68 67 adantr φ x M B coe 1 P x M K = R x coe 1 M K
69 1 2 3 4 coe1fzgsumdlem m Fin ¬ a m φ x m M B coe 1 P x m M K = R x m coe 1 M K x m a M B coe 1 P x m a M K = R x m a coe 1 M K
70 69 3expia m Fin ¬ a m φ x m M B coe 1 P x m M K = R x m coe 1 M K x m a M B coe 1 P x m a M K = R x m a coe 1 M K
71 70 a2d m Fin ¬ a m φ x m M B coe 1 P x m M K = R x m coe 1 M K φ x m a M B coe 1 P x m a M K = R x m a coe 1 M K
72 impexp φ x m M B coe 1 P x m M K = R x m coe 1 M K φ x m M B coe 1 P x m M K = R x m coe 1 M K
73 impexp φ x m a M B coe 1 P x m a M K = R x m a coe 1 M K φ x m a M B coe 1 P x m a M K = R x m a coe 1 M K
74 71 72 73 3imtr4g m Fin ¬ a m φ x m M B coe 1 P x m M K = R x m coe 1 M K φ x m a M B coe 1 P x m a M K = R x m a coe 1 M K
75 16 26 36 46 68 74 findcard2s N Fin φ x N M B coe 1 P x N M K = R x N coe 1 M K
76 75 expd N Fin φ x N M B coe 1 P x N M K = R x N coe 1 M K
77 6 76 mpcom φ x N M B coe 1 P x N M K = R x N coe 1 M K
78 5 77 mpd φ coe 1 P x N M K = R x N coe 1 M K