Step |
Hyp |
Ref |
Expression |
1 |
|
coe1fzgsumd.p |
|
2 |
|
coe1fzgsumd.b |
|
3 |
|
coe1fzgsumd.r |
|
4 |
|
coe1fzgsumd.k |
|
5 |
|
coe1fzgsumd.m |
|
6 |
|
coe1fzgsumd.n |
|
7 |
|
raleq |
|
8 |
7
|
anbi2d |
|
9 |
|
mpteq1 |
|
10 |
9
|
oveq2d |
|
11 |
10
|
fveq2d |
|
12 |
11
|
fveq1d |
|
13 |
|
mpteq1 |
|
14 |
13
|
oveq2d |
|
15 |
12 14
|
eqeq12d |
|
16 |
8 15
|
imbi12d |
|
17 |
|
raleq |
|
18 |
17
|
anbi2d |
|
19 |
|
mpteq1 |
|
20 |
19
|
oveq2d |
|
21 |
20
|
fveq2d |
|
22 |
21
|
fveq1d |
|
23 |
|
mpteq1 |
|
24 |
23
|
oveq2d |
|
25 |
22 24
|
eqeq12d |
|
26 |
18 25
|
imbi12d |
|
27 |
|
raleq |
|
28 |
27
|
anbi2d |
|
29 |
|
mpteq1 |
|
30 |
29
|
oveq2d |
|
31 |
30
|
fveq2d |
|
32 |
31
|
fveq1d |
|
33 |
|
mpteq1 |
|
34 |
33
|
oveq2d |
|
35 |
32 34
|
eqeq12d |
|
36 |
28 35
|
imbi12d |
|
37 |
|
raleq |
|
38 |
37
|
anbi2d |
|
39 |
|
mpteq1 |
|
40 |
39
|
oveq2d |
|
41 |
40
|
fveq2d |
|
42 |
41
|
fveq1d |
|
43 |
|
mpteq1 |
|
44 |
43
|
oveq2d |
|
45 |
42 44
|
eqeq12d |
|
46 |
38 45
|
imbi12d |
|
47 |
|
mpt0 |
|
48 |
47
|
oveq2i |
|
49 |
|
eqid |
|
50 |
49
|
gsum0 |
|
51 |
48 50
|
eqtri |
|
52 |
51
|
fveq2i |
|
53 |
52
|
a1i |
|
54 |
53
|
fveq1d |
|
55 |
|
eqid |
|
56 |
1 49 55
|
coe1z |
|
57 |
3 56
|
syl |
|
58 |
57
|
fveq1d |
|
59 |
|
fvex |
|
60 |
|
fvconst2g |
|
61 |
59 4 60
|
sylancr |
|
62 |
54 58 61
|
3eqtrd |
|
63 |
|
mpt0 |
|
64 |
63
|
oveq2i |
|
65 |
55
|
gsum0 |
|
66 |
64 65
|
eqtri |
|
67 |
62 66
|
eqtr4di |
|
68 |
67
|
adantr |
|
69 |
1 2 3 4
|
coe1fzgsumdlem |
|
70 |
69
|
3expia |
|
71 |
70
|
a2d |
|
72 |
|
impexp |
|
73 |
|
impexp |
|
74 |
71 72 73
|
3imtr4g |
|
75 |
16 26 36 46 68 74
|
findcard2s |
|
76 |
75
|
expd |
|
77 |
6 76
|
mpcom |
|
78 |
5 77
|
mpd |
|