Step |
Hyp |
Ref |
Expression |
1 |
|
coe1mul3.s |
|
2 |
|
coe1mul3.t |
|
3 |
|
coe1mul3.u |
|
4 |
|
coe1mul3.b |
|
5 |
|
coe1mul3.d |
|
6 |
|
coe1mul3.r |
|
7 |
|
coe1mul3.f1 |
|
8 |
|
coe1mul3.f2 |
|
9 |
|
coe1mul3.f3 |
|
10 |
|
coe1mul3.g1 |
|
11 |
|
coe1mul3.g2 |
|
12 |
|
coe1mul3.g3 |
|
13 |
1 2 3 4
|
coe1mul |
|
14 |
6 7 10 13
|
syl3anc |
|
15 |
14
|
fveq1d |
|
16 |
8 11
|
nn0addcld |
|
17 |
|
oveq2 |
|
18 |
|
fvoveq1 |
|
19 |
18
|
oveq2d |
|
20 |
17 19
|
mpteq12dv |
|
21 |
20
|
oveq2d |
|
22 |
|
eqid |
|
23 |
|
ovex |
|
24 |
21 22 23
|
fvmpt |
|
25 |
16 24
|
syl |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
|
ringmnd |
|
29 |
6 28
|
syl |
|
30 |
|
ovexd |
|
31 |
8
|
nn0red |
|
32 |
|
nn0addge1 |
|
33 |
31 11 32
|
syl2anc |
|
34 |
|
fznn0 |
|
35 |
16 34
|
syl |
|
36 |
8 33 35
|
mpbir2and |
|
37 |
6
|
adantr |
|
38 |
|
eqid |
|
39 |
38 4 1 26
|
coe1f |
|
40 |
7 39
|
syl |
|
41 |
|
elfznn0 |
|
42 |
|
ffvelrn |
|
43 |
40 41 42
|
syl2an |
|
44 |
|
eqid |
|
45 |
44 4 1 26
|
coe1f |
|
46 |
10 45
|
syl |
|
47 |
|
fznn0sub |
|
48 |
|
ffvelrn |
|
49 |
46 47 48
|
syl2an |
|
50 |
26 3
|
ringcl |
|
51 |
37 43 49 50
|
syl3anc |
|
52 |
51
|
fmpttd |
|
53 |
|
eldifsn |
|
54 |
41
|
adantl |
|
55 |
54
|
nn0red |
|
56 |
31
|
adantr |
|
57 |
55 56
|
lttri2d |
|
58 |
10
|
ad2antrr |
|
59 |
47
|
adantl |
|
60 |
59
|
adantr |
|
61 |
5 1 4
|
deg1xrcl |
|
62 |
10 61
|
syl |
|
63 |
62
|
ad2antrr |
|
64 |
11
|
nn0red |
|
65 |
64
|
rexrd |
|
66 |
65
|
ad2antrr |
|
67 |
16
|
nn0red |
|
68 |
67
|
adantr |
|
69 |
68 55
|
resubcld |
|
70 |
69
|
rexrd |
|
71 |
70
|
adantr |
|
72 |
12
|
ad2antrr |
|
73 |
64
|
adantr |
|
74 |
55 56 73
|
ltadd1d |
|
75 |
55 73 68
|
ltaddsub2d |
|
76 |
74 75
|
bitrd |
|
77 |
76
|
biimpa |
|
78 |
63 66 71 72 77
|
xrlelttrd |
|
79 |
5 1 4 27 44
|
deg1lt |
|
80 |
58 60 78 79
|
syl3anc |
|
81 |
80
|
oveq2d |
|
82 |
26 3 27
|
ringrz |
|
83 |
37 43 82
|
syl2anc |
|
84 |
83
|
adantr |
|
85 |
81 84
|
eqtrd |
|
86 |
7
|
ad2antrr |
|
87 |
54
|
adantr |
|
88 |
5 1 4
|
deg1xrcl |
|
89 |
7 88
|
syl |
|
90 |
89
|
ad2antrr |
|
91 |
31
|
rexrd |
|
92 |
91
|
ad2antrr |
|
93 |
55
|
rexrd |
|
94 |
93
|
adantr |
|
95 |
9
|
ad2antrr |
|
96 |
|
simpr |
|
97 |
90 92 94 95 96
|
xrlelttrd |
|
98 |
5 1 4 27 38
|
deg1lt |
|
99 |
86 87 97 98
|
syl3anc |
|
100 |
99
|
oveq1d |
|
101 |
26 3 27
|
ringlz |
|
102 |
37 49 101
|
syl2anc |
|
103 |
102
|
adantr |
|
104 |
100 103
|
eqtrd |
|
105 |
85 104
|
jaodan |
|
106 |
105
|
ex |
|
107 |
57 106
|
sylbid |
|
108 |
107
|
impr |
|
109 |
53 108
|
sylan2b |
|
110 |
109 30
|
suppss2 |
|
111 |
26 27 29 30 36 52 110
|
gsumpt |
|
112 |
|
fveq2 |
|
113 |
|
oveq2 |
|
114 |
113
|
fveq2d |
|
115 |
112 114
|
oveq12d |
|
116 |
|
eqid |
|
117 |
|
ovex |
|
118 |
115 116 117
|
fvmpt |
|
119 |
36 118
|
syl |
|
120 |
8
|
nn0cnd |
|
121 |
11
|
nn0cnd |
|
122 |
120 121
|
pncan2d |
|
123 |
122
|
fveq2d |
|
124 |
123
|
oveq2d |
|
125 |
111 119 124
|
3eqtrd |
|
126 |
15 25 125
|
3eqtrd |
|