Step |
Hyp |
Ref |
Expression |
1 |
|
coe1pwmul.z |
|
2 |
|
coe1pwmul.p |
|
3 |
|
coe1pwmul.x |
|
4 |
|
coe1pwmul.n |
|
5 |
|
coe1pwmul.e |
|
6 |
|
coe1pwmul.b |
|
7 |
|
coe1pwmul.t |
|
8 |
|
coe1pwmul.r |
|
9 |
|
coe1pwmul.a |
|
10 |
|
coe1pwmul.d |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
11 14
|
ringidcl |
|
16 |
8 15
|
syl |
|
17 |
1 11 2 3 12 4 5 6 7 13 9 8 16 10
|
coe1tmmul |
|
18 |
2
|
ply1sca |
|
19 |
8 18
|
syl |
|
20 |
19
|
fveq2d |
|
21 |
20
|
oveq1d |
|
22 |
2
|
ply1lmod |
|
23 |
8 22
|
syl |
|
24 |
4 6
|
mgpbas |
|
25 |
2
|
ply1ring |
|
26 |
4
|
ringmgp |
|
27 |
8 25 26
|
3syl |
|
28 |
3 2 6
|
vr1cl |
|
29 |
8 28
|
syl |
|
30 |
24 5 27 10 29
|
mulgnn0cld |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
6 31 12 32
|
lmodvs1 |
|
34 |
23 30 33
|
syl2anc |
|
35 |
21 34
|
eqtrd |
|
36 |
35
|
fvoveq1d |
|
37 |
8
|
ad2antrr |
|
38 |
|
eqid |
|
39 |
38 6 2 11
|
coe1f |
|
40 |
9 39
|
syl |
|
41 |
40
|
ad2antrr |
|
42 |
10
|
ad2antrr |
|
43 |
|
simplr |
|
44 |
|
simpr |
|
45 |
|
nn0sub2 |
|
46 |
42 43 44 45
|
syl3anc |
|
47 |
41 46
|
ffvelcdmd |
|
48 |
11 13 14
|
ringlidm |
|
49 |
37 47 48
|
syl2anc |
|
50 |
49
|
ifeq1da |
|
51 |
50
|
mpteq2dva |
|
52 |
17 36 51
|
3eqtr3d |
|