Metamath Proof Explorer


Theorem coe1pwmul

Description: Coefficient vector of a polynomial multiplied on the left by a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses coe1pwmul.z 0 ˙ = 0 R
coe1pwmul.p P = Poly 1 R
coe1pwmul.x X = var 1 R
coe1pwmul.n N = mulGrp P
coe1pwmul.e × ˙ = N
coe1pwmul.b B = Base P
coe1pwmul.t · ˙ = P
coe1pwmul.r φ R Ring
coe1pwmul.a φ A B
coe1pwmul.d φ D 0
Assertion coe1pwmul φ coe 1 D × ˙ X · ˙ A = x 0 if D x coe 1 A x D 0 ˙

Proof

Step Hyp Ref Expression
1 coe1pwmul.z 0 ˙ = 0 R
2 coe1pwmul.p P = Poly 1 R
3 coe1pwmul.x X = var 1 R
4 coe1pwmul.n N = mulGrp P
5 coe1pwmul.e × ˙ = N
6 coe1pwmul.b B = Base P
7 coe1pwmul.t · ˙ = P
8 coe1pwmul.r φ R Ring
9 coe1pwmul.a φ A B
10 coe1pwmul.d φ D 0
11 eqid Base R = Base R
12 eqid P = P
13 eqid R = R
14 eqid 1 R = 1 R
15 11 14 ringidcl R Ring 1 R Base R
16 8 15 syl φ 1 R Base R
17 1 11 2 3 12 4 5 6 7 13 9 8 16 10 coe1tmmul φ coe 1 1 R P D × ˙ X · ˙ A = x 0 if D x 1 R R coe 1 A x D 0 ˙
18 2 ply1sca R Ring R = Scalar P
19 8 18 syl φ R = Scalar P
20 19 fveq2d φ 1 R = 1 Scalar P
21 20 oveq1d φ 1 R P D × ˙ X = 1 Scalar P P D × ˙ X
22 2 ply1lmod R Ring P LMod
23 8 22 syl φ P LMod
24 4 6 mgpbas B = Base N
25 2 ply1ring R Ring P Ring
26 4 ringmgp P Ring N Mnd
27 8 25 26 3syl φ N Mnd
28 3 2 6 vr1cl R Ring X B
29 8 28 syl φ X B
30 24 5 27 10 29 mulgnn0cld φ D × ˙ X B
31 eqid Scalar P = Scalar P
32 eqid 1 Scalar P = 1 Scalar P
33 6 31 12 32 lmodvs1 P LMod D × ˙ X B 1 Scalar P P D × ˙ X = D × ˙ X
34 23 30 33 syl2anc φ 1 Scalar P P D × ˙ X = D × ˙ X
35 21 34 eqtrd φ 1 R P D × ˙ X = D × ˙ X
36 35 fvoveq1d φ coe 1 1 R P D × ˙ X · ˙ A = coe 1 D × ˙ X · ˙ A
37 8 ad2antrr φ x 0 D x R Ring
38 eqid coe 1 A = coe 1 A
39 38 6 2 11 coe1f A B coe 1 A : 0 Base R
40 9 39 syl φ coe 1 A : 0 Base R
41 40 ad2antrr φ x 0 D x coe 1 A : 0 Base R
42 10 ad2antrr φ x 0 D x D 0
43 simplr φ x 0 D x x 0
44 simpr φ x 0 D x D x
45 nn0sub2 D 0 x 0 D x x D 0
46 42 43 44 45 syl3anc φ x 0 D x x D 0
47 41 46 ffvelcdmd φ x 0 D x coe 1 A x D Base R
48 11 13 14 ringlidm R Ring coe 1 A x D Base R 1 R R coe 1 A x D = coe 1 A x D
49 37 47 48 syl2anc φ x 0 D x 1 R R coe 1 A x D = coe 1 A x D
50 49 ifeq1da φ x 0 if D x 1 R R coe 1 A x D 0 ˙ = if D x coe 1 A x D 0 ˙
51 50 mpteq2dva φ x 0 if D x 1 R R coe 1 A x D 0 ˙ = x 0 if D x coe 1 A x D 0 ˙
52 17 36 51 3eqtr3d φ coe 1 D × ˙ X · ˙ A = x 0 if D x coe 1 A x D 0 ˙