Metamath Proof Explorer


Theorem coe1pwmulfv

Description: Function value of a right-multiplication by a variable power in the shifted domain. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses coe1pwmul.z 0 ˙ = 0 R
coe1pwmul.p P = Poly 1 R
coe1pwmul.x X = var 1 R
coe1pwmul.n N = mulGrp P
coe1pwmul.e × ˙ = N
coe1pwmul.b B = Base P
coe1pwmul.t · ˙ = P
coe1pwmul.r φ R Ring
coe1pwmul.a φ A B
coe1pwmul.d φ D 0
coe1pwmulfv.y φ Y 0
Assertion coe1pwmulfv φ coe 1 D × ˙ X · ˙ A D + Y = coe 1 A Y

Proof

Step Hyp Ref Expression
1 coe1pwmul.z 0 ˙ = 0 R
2 coe1pwmul.p P = Poly 1 R
3 coe1pwmul.x X = var 1 R
4 coe1pwmul.n N = mulGrp P
5 coe1pwmul.e × ˙ = N
6 coe1pwmul.b B = Base P
7 coe1pwmul.t · ˙ = P
8 coe1pwmul.r φ R Ring
9 coe1pwmul.a φ A B
10 coe1pwmul.d φ D 0
11 coe1pwmulfv.y φ Y 0
12 1 2 3 4 5 6 7 8 9 10 coe1pwmul φ coe 1 D × ˙ X · ˙ A = x 0 if D x coe 1 A x D 0 ˙
13 12 fveq1d φ coe 1 D × ˙ X · ˙ A D + Y = x 0 if D x coe 1 A x D 0 ˙ D + Y
14 10 11 nn0addcld φ D + Y 0
15 breq2 x = D + Y D x D D + Y
16 fvoveq1 x = D + Y coe 1 A x D = coe 1 A D + Y - D
17 15 16 ifbieq1d x = D + Y if D x coe 1 A x D 0 ˙ = if D D + Y coe 1 A D + Y - D 0 ˙
18 eqid x 0 if D x coe 1 A x D 0 ˙ = x 0 if D x coe 1 A x D 0 ˙
19 fvex coe 1 A D + Y - D V
20 1 fvexi 0 ˙ V
21 19 20 ifex if D D + Y coe 1 A D + Y - D 0 ˙ V
22 17 18 21 fvmpt D + Y 0 x 0 if D x coe 1 A x D 0 ˙ D + Y = if D D + Y coe 1 A D + Y - D 0 ˙
23 14 22 syl φ x 0 if D x coe 1 A x D 0 ˙ D + Y = if D D + Y coe 1 A D + Y - D 0 ˙
24 10 nn0red φ D
25 nn0addge1 D Y 0 D D + Y
26 24 11 25 syl2anc φ D D + Y
27 26 iftrued φ if D D + Y coe 1 A D + Y - D 0 ˙ = coe 1 A D + Y - D
28 10 nn0cnd φ D
29 11 nn0cnd φ Y
30 28 29 pncan2d φ D + Y - D = Y
31 30 fveq2d φ coe 1 A D + Y - D = coe 1 A Y
32 23 27 31 3eqtrd φ x 0 if D x coe 1 A x D 0 ˙ D + Y = coe 1 A Y
33 13 32 eqtrd φ coe 1 D × ˙ X · ˙ A D + Y = coe 1 A Y