Metamath Proof Explorer


Theorem coe1scl

Description: Coefficient vector of a scalar. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses ply1scl.p P = Poly 1 R
ply1scl.a A = algSc P
coe1scl.k K = Base R
coe1scl.z 0 ˙ = 0 R
Assertion coe1scl R Ring X K coe 1 A X = x 0 if x = 0 X 0 ˙

Proof

Step Hyp Ref Expression
1 ply1scl.p P = Poly 1 R
2 ply1scl.a A = algSc P
3 coe1scl.k K = Base R
4 coe1scl.z 0 ˙ = 0 R
5 eqid var 1 R = var 1 R
6 eqid P = P
7 eqid mulGrp P = mulGrp P
8 eqid mulGrp P = mulGrp P
9 3 1 5 6 7 8 2 ply1scltm R Ring X K A X = X P 0 mulGrp P var 1 R
10 9 fveq2d R Ring X K coe 1 A X = coe 1 X P 0 mulGrp P var 1 R
11 0nn0 0 0
12 4 3 1 5 6 7 8 coe1tm R Ring X K 0 0 coe 1 X P 0 mulGrp P var 1 R = x 0 if x = 0 X 0 ˙
13 11 12 mp3an3 R Ring X K coe 1 X P 0 mulGrp P var 1 R = x 0 if x = 0 X 0 ˙
14 10 13 eqtrd R Ring X K coe 1 A X = x 0 if x = 0 X 0 ˙