Metamath Proof Explorer


Theorem coe1sfi

Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 19-Jul-2019)

Ref Expression
Hypotheses coe1sfi.a A = coe 1 F
coe1sfi.b B = Base P
coe1sfi.p P = Poly 1 R
coe1sfi.z 0 ˙ = 0 R
Assertion coe1sfi F B finSupp 0 ˙ A

Proof

Step Hyp Ref Expression
1 coe1sfi.a A = coe 1 F
2 coe1sfi.b B = Base P
3 coe1sfi.p P = Poly 1 R
4 coe1sfi.z 0 ˙ = 0 R
5 df1o2 1 𝑜 =
6 nn0ex 0 V
7 0ex V
8 eqid x 0 1 𝑜 x = x 0 1 𝑜 x
9 5 6 7 8 mapsncnv x 0 1 𝑜 x -1 = y 0 1 𝑜 × y
10 1 2 3 9 coe1fval2 F B A = F x 0 1 𝑜 x -1
11 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
12 eqid Base 1 𝑜 mPoly R = Base 1 𝑜 mPoly R
13 3 2 ply1bascl2 F B F Base 1 𝑜 mPoly R
14 3 2 elbasfv F B R V
15 11 12 4 13 14 mplelsfi F B finSupp 0 ˙ F
16 5 6 7 8 mapsnf1o2 x 0 1 𝑜 x : 0 1 𝑜 1-1 onto 0
17 f1ocnv x 0 1 𝑜 x : 0 1 𝑜 1-1 onto 0 x 0 1 𝑜 x -1 : 0 1-1 onto 0 1 𝑜
18 f1of1 x 0 1 𝑜 x -1 : 0 1-1 onto 0 1 𝑜 x 0 1 𝑜 x -1 : 0 1-1 0 1 𝑜
19 16 17 18 mp2b x 0 1 𝑜 x -1 : 0 1-1 0 1 𝑜
20 19 a1i F B x 0 1 𝑜 x -1 : 0 1-1 0 1 𝑜
21 4 fvexi 0 ˙ V
22 21 a1i F B 0 ˙ V
23 id F B F B
24 15 20 22 23 fsuppco F B finSupp 0 ˙ F x 0 1 𝑜 x -1
25 10 24 eqbrtrd F B finSupp 0 ˙ A