Metamath Proof Explorer


Theorem coe1subfv

Description: A particular coefficient of a subtraction. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses coe1sub.y Y = Poly 1 R
coe1sub.b B = Base Y
coe1sub.p - ˙ = - Y
coe1sub.q N = - R
Assertion coe1subfv R Ring F B G B X 0 coe 1 F - ˙ G X = coe 1 F X N coe 1 G X

Proof

Step Hyp Ref Expression
1 coe1sub.y Y = Poly 1 R
2 coe1sub.b B = Base Y
3 coe1sub.p - ˙ = - Y
4 coe1sub.q N = - R
5 simpl1 R Ring F B G B X 0 R Ring
6 1 ply1ring R Ring Y Ring
7 ringgrp Y Ring Y Grp
8 6 7 syl R Ring Y Grp
9 2 3 grpsubcl Y Grp F B G B F - ˙ G B
10 8 9 syl3an1 R Ring F B G B F - ˙ G B
11 10 adantr R Ring F B G B X 0 F - ˙ G B
12 simpl3 R Ring F B G B X 0 G B
13 simpr R Ring F B G B X 0 X 0
14 eqid + Y = + Y
15 eqid + R = + R
16 1 2 14 15 coe1addfv R Ring F - ˙ G B G B X 0 coe 1 F - ˙ G + Y G X = coe 1 F - ˙ G X + R coe 1 G X
17 5 11 12 13 16 syl31anc R Ring F B G B X 0 coe 1 F - ˙ G + Y G X = coe 1 F - ˙ G X + R coe 1 G X
18 8 3ad2ant1 R Ring F B G B Y Grp
19 18 adantr R Ring F B G B X 0 Y Grp
20 simpl2 R Ring F B G B X 0 F B
21 2 14 3 grpnpcan Y Grp F B G B F - ˙ G + Y G = F
22 19 20 12 21 syl3anc R Ring F B G B X 0 F - ˙ G + Y G = F
23 22 fveq2d R Ring F B G B X 0 coe 1 F - ˙ G + Y G = coe 1 F
24 23 fveq1d R Ring F B G B X 0 coe 1 F - ˙ G + Y G X = coe 1 F X
25 17 24 eqtr3d R Ring F B G B X 0 coe 1 F - ˙ G X + R coe 1 G X = coe 1 F X
26 ringgrp R Ring R Grp
27 26 3ad2ant1 R Ring F B G B R Grp
28 27 adantr R Ring F B G B X 0 R Grp
29 eqid coe 1 F = coe 1 F
30 eqid Base R = Base R
31 29 2 1 30 coe1f F B coe 1 F : 0 Base R
32 31 3ad2ant2 R Ring F B G B coe 1 F : 0 Base R
33 32 ffvelrnda R Ring F B G B X 0 coe 1 F X Base R
34 eqid coe 1 G = coe 1 G
35 34 2 1 30 coe1f G B coe 1 G : 0 Base R
36 35 3ad2ant3 R Ring F B G B coe 1 G : 0 Base R
37 36 ffvelrnda R Ring F B G B X 0 coe 1 G X Base R
38 eqid coe 1 F - ˙ G = coe 1 F - ˙ G
39 38 2 1 30 coe1f F - ˙ G B coe 1 F - ˙ G : 0 Base R
40 10 39 syl R Ring F B G B coe 1 F - ˙ G : 0 Base R
41 40 ffvelrnda R Ring F B G B X 0 coe 1 F - ˙ G X Base R
42 30 15 4 grpsubadd R Grp coe 1 F X Base R coe 1 G X Base R coe 1 F - ˙ G X Base R coe 1 F X N coe 1 G X = coe 1 F - ˙ G X coe 1 F - ˙ G X + R coe 1 G X = coe 1 F X
43 28 33 37 41 42 syl13anc R Ring F B G B X 0 coe 1 F X N coe 1 G X = coe 1 F - ˙ G X coe 1 F - ˙ G X + R coe 1 G X = coe 1 F X
44 25 43 mpbird R Ring F B G B X 0 coe 1 F X N coe 1 G X = coe 1 F - ˙ G X
45 44 eqcomd R Ring F B G B X 0 coe 1 F - ˙ G X = coe 1 F X N coe 1 G X